• Acta Optica Sinica
  • Vol. 41, Issue 1, 0114001 (2021)
Yongqiang Ning, Yongyi Chen*, Jun Zhang**, Yue Song, Yuxin Lei, Cheng Qiu, Lei Liang, Peng Jia, Li Qin, and Lijun Wang
Author Affiliations
  • State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • show less
    DOI: 10.3788/AOS202141.0114001 Cite this Article Set citation alerts
    Yongqiang Ning, Yongyi Chen, Jun Zhang, Yue Song, Yuxin Lei, Cheng Qiu, Lei Liang, Peng Jia, Li Qin, Lijun Wang. Brief Review of Development and Techniques for High Power Semiconductor Lasers[J]. Acta Optica Sinica, 2021, 41(1): 0114001 Copy Citation Text show less
    References

    [1] Bhattacharya P. Semiconductor optoelectronic devices[M]. Englwood Cliffs: Prentice Hall(2012).

    [2] Saleh B E A, Teich M C. Fundamentals of photonics[M]. New York: John Wiley & Sons, Inc.(1991).

    [3] Yariv A[M]. Optical electronics(1991).

    [4] Agrawal G P, Dutta N K. Semiconductor lasers[M]. 2nd ed. New York: Van Nostrand Reinhold(1993).

    [5] Coldren L A. Diode lasers and photonic integrated circuits[J]. Optical Engineering, 36, 616(1997). http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=1074654

    [6] Chuang S L[M]. Physics of photonic devices(2009).

    [7] Zhang B, Wang Z, Brodbeck S et al. Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity[J]. Light: Science & Applications, 3, e135(2014). http://www.nature.com/articles/lsa201416

    [8] Hu Y, Liang D, Mukherjee K et al. III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template[J]. Light: Science & Applications, 8, 93(2019). http://www.nature.com/articles/s41377-019-0202-6

    [9] Lu H Y, Tian S C, Tong C Z et al. Extracting more light for vertical emission: high power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band[J]. Light: Science & Applications, 8, 108(2019).

    [10] Mei Y, Weng G E, Zhang B P et al. Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’[J]. Light: Science & Applications, 6, e16199(2017). http://www.nature.com/lsa/journal/v6/n1/abs/lsa2016199a.html

    [11] Basov N G, Krokhin O N, Popov Yu M. Obtainment of the negative temperature state in the p-n junctions of degenerate semiconductors[J]. Zhur.Eksptl.i Teoret.Fiz, 40, 1320-1321(1961). http://www.osti.gov/scitech/biblio/4836332

    [12] Hall R N, Fenner G E, Kingsley J D et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 9, 366-368(1962).

    [13] Alferov Z I, Kazarinov R F[P]. Semiconductor laser with electric pumping: Soviet Union Patent, N181737(1963).

    [14] Kroemer H. A proposed class of hetero-junction injection lasers[J]. Proceedings of the IEEE, 51, 1782-1783(1963). http://ieeexplore.ieee.org/document/1444636

    [15] Diehl R. High-power diode lasers[M]. Berlin, Heidelberg: Springer Berlin Heidelberg(2000).

    [16] Demir A, Peters M, Duesterberg R et al. 29.5 W continuous wave output from 100 μm wide laser diode[J]. Proceedings of SPIE, 9348, 93480G(2015). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2206429

    [17] Li H, Reinhardt F, Chyr I et al. High-efficiency, high-power diode laser chips, bars, and stacks[J]. Proceedings of SPIE, 6876, 68760G(2008).

    [18] Liu G, Lehkonen S, Xu Z et al. High power 808 nm to 1060 nm CW and QCW laser diode bars[J]. Proceedings of SPIE, 10900, 10900B(2019).

    [19] Adams A R. Band-structure engineering for low-threshold high-efficiency semiconductor lasers[J]. Electronics Letters, 22, 249(1986). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=ELLEAK000022000005000249000001&idtype=cvips&gifs=Yes

    [20] Yablonovitch E, Kane E. Reduction of lasing threshold current density by the lowering of valence band effective mass[J]. Journal of Lightwave Technology, 4, 504-506(1986).

    [21] Laidig W D, Caldwell P J, Lin Y F et al. Strained-layer quantum-well injection laser[J]. Applied Physics Letters, 44, 653-655(1984).

    [22] Laidig W D, Lin Y F, Caldwell P J. Properties of InxGa1-xAs-GaAs strained-layer quantum-well-heterostructure injection lasers[J]. Journal of Applied Physics, 57, 33-38(1985). http://www.osti.gov/scitech/biblio/6173151

    [23] Chand N. Becker E E, van der Ziel J P, et al. Excellent uniformity and very low (<50 A/cm 2) threshold current density strained InGaAs quantum well diode lasers on GaAs substrate[J]. Applied Physics Letters, 58, 1704-1706(1991).

    [24] Hayakawa T, Matsumoto K, Horie H et al. In0.2Ga0.8As single strained quantum well lasers with GaAs/AlGaAs short-period superlattice barrier layers grown by molecular beam epitaxy[J]. Journal of Applied Physics, 74, 5285-5287(1993). http://scitation.aip.org/content/aip/journal/jap/74/8/10.1063/1.354274

    [25] Pendse D R, Chin A K, Dabkowski F P et al. Reliability comparison of GaAlAs/GaAs and aluminum-free high-power laser diodes[J]. Proceedings of SPIE, 3547, 79-85(1998). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=969839

    [26] Mawsi L J, Rusli S, Al-Muhanna A et al. Short-wavelength (0.7 μm>λ>0.78 μm) high-power InGaAsP-active diode lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 5, 785-791(1999).

    [27] Chen H T, Liu Y B, Hua J Z et al. Research on 808 nm Al-free active region laser diodes[J]. Semiconductor Optoelectronics, 29, 500-502, 557(2008).

    [28] Li P X, Jiang K, Zhang X et al. 20.8 W TM polarized GaAsP laser diodes of 808 nm wavelength[J]. Proceedings of SPIE, 8605, 860510(2013).

    [29] Crump P, Pietrzak A, Bugge F et al. 975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers[J]. Applied Physics Letters, 96, 131110(2010). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5442202

    [30] Xue Y H, Uemura S, Torizuka K. Optimal design for a diode-pumped high-power high-efficiency high-beam-quality laser[J]. Optics Communications, 281, 5389-5392(2008). http://www.sciencedirect.com/science/article/pii/S0030401808007050

    [31] Bergmann J P, Patschger A, Bastick A. Enhancing process efficiency due to high focusing with high brightness lasers-applicability and constraints[J]. Physics Procedia, 12, 66-74(2011). http://www.sciencedirect.com/science/article/pii/S1875389211000885

    [32] Klopf F, Reithmaier J P[J]. Forchel A. Low threshold high efficiency MBE grown GaInAs, Al, GaAs quantum dot lasers emitting at 980 nm. Journal of Crystal Growth, 227/228, 1151-1154(2001).

    [33] Zhong L, Wang J, Feng X M et al. 808 nm high-power lasers with Al-free active region with asymmetric waveguide structure[J]. Chinese Journal of Lasers, 34, 1037-1042(2007).

    [34] Chong F, Wang J, Xiong C et al. Optimum the thickness of p-waveguide layer for high conversion efficiency diode lasers[J]. Acta Optica Sinica, 29, 3419-3423(2009).

    [35] Xiong C, Chong F, Wang J et al. Doping profile optimization and design of waveguide layer for laser diode with high conversion efficiency[J]. Semiconductor Optoelectronics, 31, 16-19, 54(2010).

    [36] Morita T, Nagakura T, Torii K et al. High-efficient and reliable broad-area laser diodes with a window structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1502104(2013). http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220130600295958

    [37] Ryvkin B S, Avrutin E A, Kostamovaara J T. Asymmetric-waveguide, short cavity designs with a bulk active layer for high pulsed power eye-safe spectral range laser diodes[J]. Semiconductor Science and Technology, 35, 085008(2020). http://www.researchgate.net/publication/341144191_Asymmetric-waveguide_short_cavity_designs_with_a_bulk_active_layer_for_high_pulsed_power_eye-safe_spectral_range_laser_diodes

    [38] Knauer A, Erbert G, Staske R et al. High-power 808 nm lasers with a super-large optical cavity[J]. Semiconductor Science and Technology, 20, 621-624(2005).

    [39] Pawlik S, Sverdlov B, Buttig R et al. 9xx high power pump modules[J]. Proceedings of SPIE, 6104, 61040J(2006).

    [40] Xu Z, Gao W, Cheng L S et al. Highly reliable, high-brightness 915 nm laser diodes for fiber laser applications[J]. Proceedings of SPIE, 6909, 69090Q(2008).

    [41] Crump P, Blume G, Paschke K et al. 20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 μm[J]. Proceedings of SPIE, 7198, 719814(2009). http://spie.org/x648.xml?product_id=807263

    [42] Ling X H, Cui B F, Zhang S et al. Failure analysis of 980 nm large-optical-cavity single light bar high-power LD[J]. Laser & Infrared, 45, 369-372(2015).

    [43] Qiao C, Su R G, Li X et al. Design and fabrication of 980 nm distributed Bragg reflection semiconductor laser with high power[J]. Chinese Journal of Lasers, 46, 0701002(2019).

    [44] Kawaguchi M, Kasugai H, Samonji K et al. Catastrophic-optical-damage-free InGaN laser diodes with epitaxially formed window structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1412-1416(2011).

    [45] Najda S P, Bacchin G, Qiu B et al. Benefits of quantum well intermixing in high power diode lasers[J]. Proceedings of SPIE, 5365, 1-13(2004). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=840797

    [46] Botez D, Connolly J C. Nonabsorbing-mirror (NAM) CDH-LOC diode lasers[J]. Electronics Letters, 20, 530-532(1984). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4248835

    [47] Ko H C, Cho M W, Chang J H et al. A new structure of 780 nm AlGaAs/GaAs high power laser diode with non-absorbing mirrors[J]. Applied Physics A, 68, 467-470(1999).

    [48] McDougall S D, Jubber M J, Kowalski O P et al. GaAs/AlGaAs waveguide pin photodiodes with non-absorbing input facets fabricated by quantum well intermixing[J]. Electronics Letters, 36, 749-750(2000). http://www.ingentaconnect.com/content/iee/00135194/2000/00000036/00000008/art00037

    [49] Naito H, Nagakura T, Torii K et al. Long-term reliability of 915 nm broad-area laser diodes under 20 W CW operation[J]. IEEE Photonics Technology Letters, 27, 1660-1662(2015).

    [50] Sandroff C J, Nottenburg R N, Bischoff J C et al. Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation[J]. Applied Physics Letters, 51, 33-35(1987). http://scitation.aip.org/content/aip/journal/apl/51/1/10.1063/1.98877

    [51] Syrbu A V, Yakovlev V P, Suruceanu G I et al. ZnSe-facet-passivated InGaAs/InGaAsP/InGaP diode lasers of high CW power and ‘wallplug’ efficiency[J]. Electronics Letters, 32, 352(1996).

    [52] Mawst L J, Bhattacharya A, Nesnidal M et al. MOVPE-grown high CW power InGaAs/InGaAsP/InGaP diode lasers[J]. Journal of Crystal Growth, 170, 383-389(1997). http://www.sciencedirect.com/science/article/pii/S0022024896005131

    [53] Ressel P, Erbert G, Zeimer U et al. Novel passivation process for the mirror facets of Al-free active-region high-power semiconductor diode lasers[J]. IEEE Photonics Technology Letters, 17, 962-964(2005).

    [54] He X, Cui B F, Liu M H et al. Research on nitrogen passivation for high power semiconductor lasers[J]. Laser & Infrared, 46, 805-808(2016).

    [55] Zhou L, Wang Y H, Jia B S et al. Novel passivation process for GaAs(110) surface with sulf-solutions[C]//2011 Academic International Symposium on Optoelectronics and Microelectronics Technology, October 12-16, 2011, Harbin, China., 35-37(2011).

    [56] Ghita R V, Negrila C C, Cotirlan C et al. On the passivation of GaAs surface by sulfide compounds[J]. Digest Journal of Nanomaterials and Biostructures, 8, 1335-1344(2013).

    [57] Kanskar M, Bai C, Bao L et al. High brightness diodes and 600 W 62% efficient low SWaP fiber-coupled package[J]. Proceedings of SPIE, 11262, 112620A(2020).

    [58] Xu D, Ma D, Yu Z K et al. Kilowatt wavelength-stabilized CW and QCW diode laser[J]. Proceedings of SPIE, 11262, 112620C(2020).

    [60] Decker J, Crump P, Fricke J et al. 25-W monolithic spectrally stabilized 975 nm minibars for dense spectral beam combining[J]. IEEE Photonics Technology Letters, 27, 1675-1678(2015).

    [61] Witte U, Traub M, Meo A D et al. Compact 35 μm fiber coupled diode laser module based on dense wavelength division multiplexing of NBA mini-bars[J]. Proceedings of SPIE, 9733, 97330H(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2501599

    [62] Unger A, Uthoff R, Stoiber M et al. Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kW-class direct diode lasers[J]. Proceedings of SPIE, 9348, 934809(2015). http://spie.org/x648.xml?product_id=2079425

    [63] Witte U, Schneider F, Holly C et al. kW-class direct diode laser for sheet metal cutting based on commercial pump modules[J]. Proceedings of SPIE, 10086, 1008608(2017). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2606709

    [64] Hengesbach S, Krauch N, Holly C et al. High-power dense wavelength division multiplexing of multimode diode laser radiation based on volume Bragg gratings[J]. Optics Letters, 38, 3154-3157(2013).

    [66] Daneu V, Sanchez A, Fan T Y et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Optics Letters, 25, 405-407(2000).

    [67] Chann B, Huang R K, Missaggia L J et al. Near-diffraction-limited diode laser arrays by wavelength beam combining[J]. Optics Letters, 30, 2104-2106(2005).

    [68] Gopinath J T, Chann B, Fan T Y et al. 1450-nm high-brightness wavelength-beam combined diode laser array[J]. Optics Express, 16, 9405-9410(2008).

    [70] Hecht J. Beam combining cranks up the power[J]. Laser Focus World, 48, 50-53(2012). http://smartsearch.nstl.gov.cn/paper_detail.html?id=05ed60f33de056034056050f0cb52e16

    [71] Zimer H, Haas M, Ried S et al. Thin film filter wavelength-locked laser cavity for spectral beam combining of diode laser arrays[C]//2014 IEEE Photonics Conference, October 12-16, 2014, San Diego, CA, USA., 230-231(2014).

    [72] Strohmaier S G, Erbert G. Meissner-Schenk A H, et al. kW-class diode laser bars[J]. Proceedings of SPIE, 10086, 100860C(2017).

    [73] Nakatsu Y, Nagao Y, Kozuru K et al. High-efficiency blue and green laser diodes for laser displays[J]. Proceedings of SPIE, 10918, 109181D(2019). http://www.researchgate.net/publication/331455099_high-efficiency_blue_and_green_laser_diodes_for_laser_displays

    [74] König H, Lell A, Stojetz B et al. Blue 450nm high power semiconductor continuous wave laser bars exceeding rollover output power of 80 W[J]. Proceedings of SPIE, 10514, 1051402(2018). http://adsabs.harvard.edu/abs/2018SPIE10514E..02K

    [75] Nozaki S, Kawaguchi M, Nibu T et al. A high power InGaN laser array with built-in smile suppression structure[J]. Proceedings of SPIE, 11262, 112620S(2020). http://www.researchgate.net/publication/339634967_A_high_power_InGaN_laser_array_with_built-in_smile_suppression_structure

    [76] Nakatsu Y, Nagao Y, Hirao T et al. Blue and green InGaN semiconductor lasers as light sources for displays[J]. Proceedings of SPIE, 11280, 112800S(2020).

    [77] König H, Ali M, Bergbauer W et al. Visible GaN laser diodes: from lowest thresholds to highest power levels[J]. Proceedings of SPIE, 10939, 109390C(2019). http://www.researchgate.net/publication/331767024_Visible_GaN_laser_diodes_from_lowest_thresholds_to_highest_power_levels

    [78] König H, Gerhard S, Ali M et al. Blue high power InGaN semiconductor laser diodes: design optimization of laser bars and single emitters for best performance and reliability[J]. Proceedings of SPIE, 11262, 112620Q(2020). http://www.researchgate.net/publication/339634739_Blue_high_power_InGaN_semiconductor_laser_diodes_Design_optimization_of_laser_bars_and_single_emitters_for_best_performance_and_reliability

    [79] Baumann M, Balck A, Malchus J et al. 1000 W blue fiber-coupled diode-laser emitting at 450 nm[J]. Proceedings of SPIE, 10900, 1090005(2019). http://www.researchgate.net/publication/331513674_1000_W_blue_fiber-coupled_diode-laser_emitting_at_450_nm

    [80] Könning T, Harth F, König P et al. Kilowatt-class high power fiber-coupled diode lasers at 450 nm[J]. Proceedings of SPIE, 11262, 112620N(2020). http://www.researchgate.net/publication/339637765_Kilowatt-class_high_power_fiber-coupled_diode_lasers_at_450nm

    [81] Feve J P, Finuf M, Fritz R et al. Scalable blue laser system architecture[J]. Proceedings of SPIE, 11262, 112620P(2020).

    [82] Riva M, Rossi G, Braglia A et al. High brightness 100 W-50 μm delivery blue laser diode module[J]. Proceedings of SPIE, 11262, 112620O(2020). http://www.researchgate.net/publication/339637829_High_brightness_100_W-50_um_delivery_blue_laser_diode_module

    [83] Villarreal F, Zhou W, Roethle J et al. Advances in blue and near-IR high-power/high-brightness direct diode lasers using wavelength beam combining (Conference Presentation)[J]. Proceedings of SPIE, 11262, 112620U(2020).

    Yongqiang Ning, Yongyi Chen, Jun Zhang, Yue Song, Yuxin Lei, Cheng Qiu, Lei Liang, Peng Jia, Li Qin, Lijun Wang. Brief Review of Development and Techniques for High Power Semiconductor Lasers[J]. Acta Optica Sinica, 2021, 41(1): 0114001
    Download Citation