• Photonics Research
  • Vol. 11, Issue 9, 1535 (2023)
Roman Calpe1,*, Atri Halder1, Meilan Luo1,2, Matias Koivurova3,4, and Jari Turunen1
Author Affiliations
  • 1Center for Photonics Sciences, University of Eastern Finland, FI-80101 Joensuu, Finland
  • 2Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
  • 3Tampere Institute for Advanced Study, Tampere University, 33100 Tampere, Finland
  • 4Faculty of Engineering and Natural Sciences, Tampere University, FI-33720 Tampere, Finland
  • show less
    DOI: 10.1364/PRJ.492233 Cite this Article Set citation alerts
    Roman Calpe, Atri Halder, Meilan Luo, Matias Koivurova, Jari Turunen, "Partially coherent beam generation with metasurfaces," Photonics Res. 11, 1535 (2023) Copy Citation Text show less
    References

    [1] F. Gori, M. Santarsiero. Devicing genuine spatial correlation functions. Opt. Lett., 32, 3531-3533(2007).

    [2] F. Gori, M. Santarsiero. Devicing genuine twisted cross-spectral densities. Opt. Lett., 43, 595-598(2018).

    [3] W. Martiensen, E. Spiller. Coherence and fluctuations in light beams. Am. J. Phys., 32, 919-926(1964).

    [4] J. D. Farina, L. M. Narducci, E. Collett. Generation of highly directional beams from a globally incoherent source. Opt. Commun., 32, 203-208(1980).

    [5] Q. He, J. Turunen, A. T. Friberg. Propagation and imaging experiments with Gaussian Schell-model beams. Opt. Commun., 67, 245-250(1988).

    [6] A. C. Schell. A technique for the determination of the radiation pattern from a partially coherent aperture. IEEE Trans. Ant. Propag., 15, 187-188(1967).

    [7] M. Luo, M. Koivurova, J. Turunen. Azimuthally periodic and radially quasi-periodic Bessel-correlated fields. Opt. Express, 30, 11754-11766(2022).

    [8] Z. Mei, O. Korotkova. Random sources generating ring-shaped beams. Opt. Lett., 38, 91-93(2013).

    [9] M. Luo, D. Zhao. Elliptical Laguerre Gaussian Schell-model beams with a twist in random media. Opt. Express, 27, 30044-30054(2019).

    [10] J. Turunen, P. Blair, J. M. Miller, M. R. Taghizadeh, E. Noponen. Bragg holograms with binary synthetic surface-relief profile. Opt. Lett., 18, 1022-1024(1993).

    [11] E. Noponen, J. Turunen. Binary high-frequency-carrier diffractive optical elements: electromagnetic theory. J. Opt. Soc. Am. A, 11, 1097-1109(1994).

    [12] E. Tervonen, J. Turunen, J. Pekola. Pulse-frequency-modulated high-frequency-carrier diffractive elements for pattern projection. Opt. Eng., 33, 2579-2587(1994).

    [13] A. Halder, H. Partanen, A. Leinonen, M. Koivurova, T. K. Hakala, T. Setälä, J. Turunen, A. T. Friberg. Mirror-based scanning wavefront-folding interferometer for coherence measurements. Opt. Lett., 45, 4260-4263(2020).

    [14] A. T. Friberg, R. Sudol. Propagation parameters of Gaussian Schell model beams. Opt. Commun., 41, 383-387(1982).

    [15] J. Durnin. Exact solutions for nondiffracting beams: I. The scalar theory. J. Opt. Soc. Am. A, 4, 651-654(1987).

    [16] J. Durnin, J. J. Miceli, J. H. Eberly. Diffraction-free beams. Phys. Rev. Lett., 58, 1499-1501(1987).

    [17] R. H. Jordan, D. H. Hall. Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution. Opt. Lett., 19, 427-429(1994).

    [18] D. H. Hall. Vector–beam solutions of Maxwell’s wave equation. Opt. Lett., 21, 9-11(1996).

    [19] V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, G. S. Spagnolo. Generalized Bessel–Gauss beams. J. Mod. Opt., 43, 1155-1166(1996).

    [20] J. Turunen, A. Vasara, A. T. Friberg. Propagation-invariance and self-imaging in variable-coherence optics. J. Opt. Soc. Am. A, 8, 282-289(1991).

    [21] S. A. Ponomarenko, W. Huang, M. Cada. Dark and antidark diffraction-free beams. Opt. Lett., 32, 2508-2510(2007).

    [22] A. Halder, M. Koivurova, H. Partanen, J. Turunen. Paraxial propagation of a class of Bessel-correlated fields. Opt. Express, 26, 11055-11067(2018).

    [23] M. Woerdemann, C. Alpmann, M. Esseling, C. Denz. Advanced optical trapping by complex beam shaping. Laser Photon. Rev., 7, 839-854(2013).

    [24] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [25] Y. Cai, Y. Chen, F. Wang. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited]. J. Opt. Soc. Am. A, 31, 2083-2096(2014).

    [26] H. Kim, J. Park, B. Lee. Fourier Modal Method and Its Applications in Computational Nanophotonics(2017).

    [27] D. Das, A. Halder, H. Partanen, M. Koivurova, J. Turunen. Propagation of Bessel-correlated specular and antispecular beams. Opt. Express, 30, 5709-5721(2022).

    [28] F. Gori. Measuring Stokes parameters by means of a polarization grating. Opt. Lett., 24, 584-586(1999).

    [29] J. Tervo, J. Turunen. Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings. Opt. Lett., 25, 785-786(2000).

    [30] F. Gori, G. Guattari, C. Palma, C. Padovani. Specular cross-spectral density functions. Opt. Commun., 68, 239-243(1988).

    [31] H. Partanen, N. Sharmin, J. Tervo, J. Turunen. Specular and antispecular light beams. Opt. Express, 23, 28718-28727(2015).