• Photonics Research
  • Vol. 11, Issue 9, 1535 (2023)
Roman Calpe1,*, Atri Halder1, Meilan Luo1,2, Matias Koivurova3,4, and Jari Turunen1
Author Affiliations
  • 1Center for Photonics Sciences, University of Eastern Finland, FI-80101 Joensuu, Finland
  • 2Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
  • 3Tampere Institute for Advanced Study, Tampere University, 33100 Tampere, Finland
  • 4Faculty of Engineering and Natural Sciences, Tampere University, FI-33720 Tampere, Finland
  • show less
    DOI: 10.1364/PRJ.492233 Cite this Article Set citation alerts
    Roman Calpe, Atri Halder, Meilan Luo, Matias Koivurova, Jari Turunen, "Partially coherent beam generation with metasurfaces," Photonics Res. 11, 1535 (2023) Copy Citation Text show less

    Abstract

    An optical system for the generation of partially coherent beams with genuine cross-spectral density functions from spatially modulated globally incoherent sources is presented. The spatial intensity modulation of the incoherent source is achieved by quasi-planar metasurfaces based on spatial-frequency modulation of binary Bragg surface-relief diffraction gratings. Two types of beams are demonstrated experimentally: (i) azimuthally periodic, radially quasi-periodic beams and (ii) rotationally symmetric Bessel-correlated beams with annular far-zone radiation patterns.
    W(ρ1,ρ2)=p(v)H(ρ1,v)H(ρ2,v)d2v.

    View in Article

    H(ρ,v)=H(ρ)exp(i2πρ·v),

    View in Article

    W(ρ1,ρ2)=H(ρ1)H(ρ2)p(v)exp(i2πΔρ·v)d2v,

    View in Article

    W(ρ1,ρ2)=t(ρ1)t(ρ2)W(ρ1,ρ2)

    View in Article

    p(v,ϕ)=pmexp(2π2σ02v2)[1+CmJm(2πρ0v)cos(mϕ)]

    View in Article

    pm=2πσ02{{1+Cmexp[ρ02/(2σ02)]}1whenm=0,1whenm0.

    View in Article

    S(ρ)=exp(2ρ2/w02).

    View in Article

    μ(Δρ)=exp(Δρ2/2σ02)×[1+Cm(i)mcos(mΔφ)exp(ρs22)Im(ρsΔρσ0)],

    View in Article

    S(ρ,z)=w02w2(Δz)exp[2ρ2w2(Δz)]{1+Cm(1)mcos(mφ)×exp[R22q2c(Δz)]Jm[2Rq1+q2Δz/zR1+(Δz/zR)2ρw0]},

    View in Article

    w(Δz)=w0[1+(Δz/zR)2]1/2

    View in Article

    c(Δz)=1+(Δz/zG)21+(Δz/zR)2,

    View in Article

    zR=zG(1+q2)1/2

    View in Article

    p(v,ϕ)=p0exp(2π2σ02v2)[1±J0(2πρ0v)],

    View in Article

    B0=[1±exp(ρs2/2)]1.

    View in Article

    μ(Δρ)=B0exp(Δρ2/2σ02)×[1±exp(ρs22)I0(ρsΔρσ0)].

    View in Article

    S(ρ,z)=B0w02w2(Δz)exp[2ρ2w2(Δz)]×{1±exp[R22q2c(Δz)]  J0[2Rq1+q2Δz/zR1+(Δz/zR)2ρw0]},

    View in Article

    μ(Δρ)=exp(Δρ22σ02)(1Δρ22σ02),

    View in Article

    S(ρ,z)=w02w2(Δz)exp[2ρ2w2(Δz)]×[c(Δz)+2Δz2zR2ρ2(w02+σ02)(Δz2+zR2)2].

    View in Article

    sinθB=λ02nd.

    View in Article

    M(v,ϕ)=M0[1+Jm(2πρ0v)cos(mϕ)],

    View in Article

    M(v,ϕ)=M0[1J0(2πρ0v)],

    View in Article