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An optical system for the generation of partially coherent beams with genuine cross-spectral density functions
from spatially modulated globally incoherent sources is presented. The spatial intensity modulation of the in-
coherent source is achieved by quasi-planar metasurfaces based on spatial-frequency modulation of binary Bragg
surface-relief diffraction gratings. Two types of beams are demonstrated experimentally: (i) azimuthally periodic,
radially quasi-periodic beams and (ii) rotationally symmetric Bessel-correlated beams with annular far-zone
radiation patterns.
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1. INTRODUCTION

We explore implementations of an experimental scheme, pro-
posed by Gori and Santarsiero [1,2], for the generation of a
wide range of spatially partially coherent optical beams. The
scheme is based on a globally incoherent field with a specific
spatially varying intensity distribution p�v� at the input plane
of an optical system that performs a linear transformation de-
scribed by an arbitrary spatial kernel function H �ρ, v�. Partially
coherent fields generated in this way are guaranteed to have
genuine (non-negative definite) cross-spectral density functions
(CSDs) W �ρ1, ρ2�.

In our implementation the required spatial variation of the
intensity distribution is created by first reducing the spatial co-
herence of a laser beam with a random rotating diffuser [3–5]
and then imaging the scattered field onto an intensity-modu-
lating metasurface. The kernel function of the optical system is
taken to be of Fourier form, which is sufficient here since
the fields to be demonstrated follow the Schell-model [6].
The generation scheme and its practical limitations are dis-
cussed in Section 2.

Among numerous possible options, we concentrate on a re-
cently introduced class of azimuthally periodic and radially
quasi-periodic partially coherent beams [7]. In a special case
these beams have annular far-zone distributions, and in a cer-
tain limit they reduce to fundamental Laguerre–Gaussian cor-
related beams [8,9]. To make the present paper self-contained,
we cover the main properties of these fields in Section 3.

The metasurfaces are realized as binary diffractive struc-
tures based on Bragg diffraction by surface-relief gratings as
information carriers [10]. The spatial intensity information
for coherence control is included by spatial-frequency modu-
lation with a continuous variation of the local fill factor
of the carrier grating [11,12]. The operating principle, de-
sign, and fabrication of the metasurfaces are the subject of
Section 4.

The experimental results are presented in Section 5, along
with simulations based on the theory in Section 3. Results of
beam propagation over several distances Δz in the half-space
z > z0 are presented, and the complex degrees of coherence
at the plane z � 0, which give rise to the propagation proper-
ties, are measured with a mirror-based wavefront folding inter-
ferometer (WFI) [13].

While only particular examples of partially coherent beams
are demonstrated here, the generation scheme is applicable to
any beam covered by the model in Refs. [1,2]. It can also be
extended to vector beams. These issues are discussed in
Section 6 before conclusions.

2. DEVISING GENUINE PARTIALLY COHERENT
BEAMS

Gori and Santarsiero [1] introduced a class of genuine spatially
partially coherent fields, for which the CSD has a non-negative
definite form
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W �ρ1, ρ2� �
Z

∞

−∞
p�v�H ∗�ρ1, v�H �ρ2, v�d2v: (1)

Here, ρ1 and ρ2 are transverse position coordinates in a plane
z � constant, p�v� is a non-negative function of a 2D variable
v, and H �ρ, v� is a kernel of an arbitrary linear transformation.
The frequency dependence of the CSD is implicit. A wide
range of physically relevant CSDs is obtained if the
kernel function is taken to be of the form

H �ρ, v� � H �ρ� exp�−i2πρ · v�, (2)

which can be realized with a 2D Fourier-transforming optical
system. Upon inserting Eq. (2) into Eq. (1) we get

W �ρ1, ρ2� � H ∗�ρ1�H �ρ2�
Z

∞

−∞
p�v� exp�−i2πΔρ · v�d2v,

(3)

where Δρ � ρ2 − ρ1. This implies that the complex degree of
spatial coherence depends only on the coordinate difference,
resulting in fields which are of the Schell-model form. Fields
that depart from this model require more sophisticated kernels,
as discussed in Section 6.

The schematic setup for generating spatially partially coher-
ent beams with genuine CSDs is illustrated in Fig. 1(a). One
starts from a globally incoherent field at the input plane A of
the linear system T, where the intensity distribution is propor-
tional to the kernel functionH �ρ, v�. The weight function p�v�
is embedded in the metasurface at A to modulate the intensity
profile; then the CSD given by Eq. (1) is produced at the out-
put plane B. If desired, the output field can be modulated by
adding a complex-amplitude transmission filter with transmis-
sion function t�ρ� at plane B, which transforms the CSD as

W 0�ρ1, ρ2� � t∗�ρ1�t�ρ2�W �ρ1, ρ2� (4)

and therefore adds freedom to the choice of realizable fields.
In the simplest case the filter is just a hard or smoothly apodized
aperture.

The system we use to generate the incoherent field at plane
A is illustrated schematically in Fig. 1(b). In our implemen-
tation a linearly polarized HeNe laser beam (wavelength
λ0 � 632.8 nm) is focused to a width wD on a standard rotat-
ing diffuser to reduce its spatial coherence area. The scattered
field is collimated by lens L1 and passes through a Gaussian
apodization filter G to produce a Gaussian Schell-model
(GSM) beam [5]. The transmitted beam is then demagnified
by an afocal system consisting of lenses L2 and L3 to illuminate
the metasurface with a GSM beam of radius wA.

Admittedly, the use of a rotating diffuser is a bulky and
somewhat cumbersome approach to reduce spatial coherence.
For future needs we therefore put forward an alternative tech-
nical solution: moving the diffuser randomly in the xy plane
with a piezoelectric device. Randommovement over a sufficient
area is possible since piezoelectric devices allow fast 2D scan-
ning over distances larger than the required coherence area.
Strictly speaking, the field on A is not completely incoherent,
but it is quasi-homogeneous. Therefore the conditions for the
validity of Eq. (1) do not hold exactly, but non-negative def-
initeness is nevertheless ensured since the field is physically
realizable.

3. PARTIALLY COHERENT MODEL BEAMS

We demonstrate the scheme in Fig. 1 by applying it to a
recently introduced class of radially quasi-periodic and azimu-
thally periodic (RAP) beams [7]. These are generally Bessel-
correlated beams with a Gaussian intensity profile at the source
plane z � z0, which, in a special case, can have an annular dis-
tribution of radiant intensity. The main characteristics of RAP
beams are briefly covered to make the paper self-contained and
to summarize the formulas that enable numerical simulations of
experimental results.

A. Radially Quasi-Periodic, Azimuthally Periodic
Beams
We introduce RAP beams by assuming that the function
H �ρ� in Eq. (2) has a Gaussian form H �ρ� � exp�−ρ2∕w2

0�.
The weight function p�v� is written in polar coordinates
v � �v,ϕ� as
p�v,ϕ� � pm exp�−2π2σ20v2��1� CmJm�2πρ0v� cos�mϕ��

(5)

with

pm � 2πσ20

�
f1� Cm exp�−ρ20∕�2σ20��g−1 whenm � 0,
1 whenm ≠ 0:

(6)

Here, σ0 and ρ0 are positive constants, Jm�z� denotes the Bessel
function of the first kind and order m, C0 � �1, and Cm � 1
for m > 1. Equations (1) and (2) result in CSDs
of the form W �ρ1, ρ2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S�ρ1�S�ρ2�

p
μ�Δρ�, where the

spectral density at z � z0, using Eqs. (5) and (6), has a
Gaussian profile

S�ρ� � exp�−2ρ2∕w2
0�: (7)

Fig. 1. (a) Experimental setup for transforming a globally incoher-
ent field at plane A into a custom-designed partially coherent beam at
plane B using a linear optical transformation system T. (b) Generation
of the globally incoherent field at plane A: D is a dynamic diffuser to
reduce spatial coherence of the incident focused laser beam, L1 is a
collimating lens, L2 and L3 form an afocal imaging system of magni-
ficationm 0 � 1∕5,G is a Gaussian filter, and the metasurface is placed
at plane A. The beam radii at planesD, G, and A are wD, wG, and wA ,
and the coherence radii at G and B are σG and σB.
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The complex degree of coherence (DOC) for solutions
m ≥ 1 is

μ�Δρ��exp�−Δρ2∕2σ20�

×
�
1�Cm�−i�m cos�mΔφ�exp

�
−
ρ2s
2

�
Im

�
ρsΔρ
σ0

��
,

(8)
where Δρ � �Δρ,Δφ�, ρs � ρ0∕σ0, and Im�z� denotes the
modified Bessel function of the first kind and order m.

A closed-form expression for the propagated CSD in the
paraxial domain can be found with the standard Fresnel for-
mula [7]. In particular, the spectral density, which we will mea-
sure in Section 5, evolves as

S�ρ, z� � w2
0

w2�Δz� exp

�
−

2ρ2

w2�Δz�

��
1� Cm�−1�m cos�mφ�

× exp
�
−
R2

2q2
c�Δz�

�

× Jm

�
2R

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p Δz∕zR
1� �Δz∕zR�2

ρ

w0

��
, (9)

where ρ � �ρ,φ�, Δz � z − z0 is the propagation distance
from plane B, q � σ0∕w0, and R � ρ0∕w0. Further,

w�Δz� � w0�1� �Δz∕zR�2�1∕2 (10)

is the beam width at z > 0, and the quantity c�Δz� is

c�Δz� � 1� �Δz∕zG�2
1� �Δz∕zR�2

, (11)

where zG � kw2
0∕2 is the Rayleigh range of a fully coherent

Gaussian beam, and

zR � zG�1� q−2�−1∕2 (12)

is the Rayleigh range of a partially coherent GSM beam [14]
characterized by coherence parameter q.

B. Beams with Annular Far-Zone Radiation Pattern
Let us consider RAP beams with m � 0 and C0 � �1 in
Eq. (5), which gives a weight function

p�v,ϕ� � p0 exp�−2π2σ20v2��1� J0�2πρ0v��, (13)

where p0 � 2πσ20B0 and

B0 � �1� exp�−ρ2s ∕2��−1: (14)

The spectral density at the source plane is still given by
Eq. (7), but the complex DOC takes the form

μ�Δρ� � B0 exp�−Δρ2∕2σ20�

×
�
1� exp

�
−
ρ2s
2

�
I 0

�
ρsΔρ
σ0

��
: (15)

The spectral density at z > 0,

S�ρ, z� � B0

w2
0

w2�Δz� exp

�
−

2ρ2

w2�Δz�

�

×
�
1� exp

�
−
R2

2q2
c�Δz�

�

× J0

�
2R

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p Δz∕zR
1� �Δz∕zR�2

ρ

w0

��
, (16)

takes an annular (donut-shaped) form upon propagation to the
far field. It therefore shares some properties of other ‘hollow’
beams, including fully coherent higher-order Bessel beams
[15,16], orbital angular momentum, azimuthally polarized
beams [17,18], generalized Bessel–Gauss beams [19], partially
coherent dark propagation-invariant beams [20,21], and vari-
ous Bessel-correlated beams that may have donut shapes either
initially or in the far-zone [22]. Donut-shaped beams have
proven important in particle trapping [23] and stimulated
emission depletion (STED) microscopy [24].

In the limiting case ρs → 0, and when C0 � −1, the com-
plex DOC given in Eq. (15) reduces to

μ�Δρ� � exp

�
−
Δρ2

2σ20

��
1 −

Δρ2

2σ20

�
, (17)

which is the DOC of a Laguerre–Gauss Schell-model (LGSM)
source of order n � 1 [8]. The spectral density of the LGSM
beams takes the form

S�ρ, z� � w2
0

w2�Δz� exp

�
−

2ρ2

w2�Δz�

�

×
�
c�Δz� � 2Δz2z2Rρ2

�w2
0 � σ20��Δz2 � z2R�2

�
: (18)

If C0 � 1 and we again let ρs → 0, Eq. (15) becomes the
DOC of a GSM beam. Figure 2 illustrates some properties of
the m � 0 solutions not discussed in Ref. [7]. Cross sections
of the DOC plotted in Fig. 2(a) show central peaks and side
lobes of expanding widths when the value of ρs in the I 0 term
in Eq. (15) increases. The far-field intensity in Fig. 2(b) is also
affected: the central minimum is close to zero at small values of
ρs, which also provides the widest central dark region.

4. METASURFACE DESIGN AND REALIZATION

In Ref. [7] we presented an on-axis encoding technique of the
metasurface at plane A, which can be realized in the axially sym-
metric geometry of Fig. 1. However, our experiments showed
that this scheme has axial noise, which proved difficult to avoid.
We therefore opted for an alternative, off-axis coding scheme.
Our method is effectively similar to that used in Ref. [25], with
the difference that we modulate the field amplitude with a more
compact metasurface, instead of filtering the diffracted light
from a spatial light modulator. In addition, we can obtain

Fig. 2. Properties of RAP beams of order m � 0 with λ � 633 nm,
w0 � 300 μm, and q � 1∕30. (a) Cross sections of the DOC
and (b) far-field (at z � 10zR) spectral densities when C0 � −1,
ρs → 0 (black), ρs � 1 (red), ρs � 2 (green), and ρs � 4 (blue).
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extremely high diffraction efficiency with the off-axis encoding.
The drawback of our technique is the somewhat trickier align-
ment of the optical components compared to the on-axis
method.

A. Operating Principle and Carrier Design
The metasurface is realized using a high-frequency carrier gra-
ting as introduced in Ref. [10]. This is a binary surface-relief
grating with depth h and fill factor f � c∕d as design param-
eters, as defined in Fig. 3(a). The grating operates at large angles
of incidence θ ∼ 30°. Hence the geometry of Fig. 1 is folded at
A by twice this angle. The design angle of incidence is the Bragg
angle θ � θB given by

sin θB � λ0
2nd

: (19)

Assuming that the incident field is linearly polarized in the
direction of the grating grooves, we design the carrier grating
for maximum efficiency of order l � −1 in TE polarization for
λ0 � 633 nm, n � 1.49, and d � λ0.

The efficiency of the carrier grating as a function of fill factor
f � c∕d was calculated using the Fourier modal method
(FMM) [26]. The results are shown in Fig. 3(b). The efficiency
has two maxima reaching almost unity, at f ∼ 0.16 and
f ∼ 0.62. We employ the second since the efficiency drops
smoothly to zero when f approaches unity. Since the incident

field is not fully collimated, we plot in Fig. 3(c) the efficiency
as a function of the angle of incidence θ (Bragg selectivity of
the grating) for several fill factors over the range 0° < θ < 40°.
It turns out that the angular selectivity is not a serious limiting
factor for operation of the grating.

The intensity coding is performed as local variations of the
fill factor f as in Refs. [10,11]. Fill factors between 0.62 and
0.9, marked with dashed vertical lines in Fig. 3(b), are used
for efficiency encoding since they are practically feasible. The
target grating depth was chosen to be h � 1350 nm, giving
η−1 ≈ 0.95 at the second maximum f � 0.62.

B. Fabrication
The sample was fabricated by a standard electron beam lithog-
raphy procedure. A 1-inch-diameter and 0.5-mm-thick SiO2

substrate was cleaned and spin-coated with a 1.4-μm-thick pos-
itive-tone resist layer (PMMA), which was coated with a con-
ductive 30-nm-thick copper layer via thermal evaporation.
After creating the grating patterns with electron beam lithog-
raphy, the copper layer was removed in HNO3, followed by
resist development in MIBK:IPA (1:3 solution) for 75 s and
30 s rinsing with IPA.

Scanning electron microscope images of one of the samples
are shown in the Fig. 4. In Fig. 4(a) we show a cross section
around a location where the fill factor changes abruptly from
0.8 to 0.62, and in Fig. 4(b) a top view of the region is shown
where f is fairly constant. The fill factor is fairly well repro-
duced, but in view of Fig. 4(a) the groove depth is somewhat
reduced especially at large f . This could be improved by in-
creasing the electron beam dose. However, its main effect is to
reduce η−1, which should be low at large f according to Fig. 3.
In fact the modulation of h helps us to achieve the low values of
η−1 required beyond the second vertical line in Fig. 3(b).

5. EXPERIMENTAL RESULTS

The focal lengths of the lenses in Fig. 1(b) before plane A
are flexible, but we chose L1 � 150 mm, L2 � 200 mm, and
L3 � 40 mm. We measured wD � 31 μm and wA ≈ 880 μm.
The GSM was used as in Ref. [5] to estimate the coherence
radius at the filter G (Thorlabs NDYR20A) to be σG ≈
210 μm, which means that the field is quasi-homogenous with
σ1∕wG ≈ 1∕21. Measurement with a WFI gives the results in
Fig. 5, where we show cross sections of the spectral density and
the absolute value of the spatial DOC at plane A, from which
wA ≈ 880 μm. While jμ�Δx�j is not completely Gaussian but

Fig. 3. (a) Operating geometry and design parameters of the Bragg
carrier grating. θ is the first Bragg angle of incidence from air to the
substrate of refractive index ns and θ 0 from the substrate to the grating
layer with refractive index n. h is the groove depth, c is the ridge width,
and d is the period. (b) Efficiency η−1 of order l � −1 as a function
of the fill factor in TE polarization. (c) Efficiency η−1 as a function of
angle of incidence for different fill factors.

Fig. 4. SEM images of a fabricated grating. (a) Side view. (b) Top
view.
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has some side lobes, we can estimate σA ≈ 42 μm. The field at
plane A is definitely quasi-homogeneous and, since the coher-
ence area is larger than d by a factor of 60, the metasurface
works well as a Bragg deflector.

The Gaussian spot at plane A, with wA ≈ 880 μm, could
be used directly to approximate the Gaussian factor in p�v�.
Hence, to encode p�v�, only the residual RAP factor needed
to be realized with the metasurface. Explicitly, this factor is

M�v,ϕ� � M 0�1� Jm�2πρ0v� cos�mϕ��, (20)

for beams with m > 0 and

M�v,ϕ� � M 0�1 − J0�2πρ0v��, (21)

for m � 0. Here, M 0 is chosen such that the maximum does
not exceed unity. Sampled 100 × 100 versions of the metasur-
faces with spatially varying transmission efficiencies are illus-
trated in Fig. 6. In particular, we show the m � 3, ρ0 � 3 mm
solution in Eq. (20) and the m � 0, ρ0 � 2 mm solution in
Eq. (21), which are demonstrated experimentally. The modu-
lation contrast of p�v� is much weaker in the former case than
in the latter. The linear system T, which does the Fourier trans-
form from plane A to plane B, is effectively a positive lens
of focal length f H � 50 mm. Therefore, the spatial frequency
v at plane A is connected to the real-space coordinate ρ via
v � ρ∕λ0f H.

A. Source-Plane Complex Degree of Coherence
The measured amplitude and phase of the DOC at plane
z � z0 are shown in Fig. 7 for the two beams considered.
The distributions of μ�Δx,Δy� are evaluated using a mirror-
based WFI as in Ref. [27]. We show the measured phases only

across a circular area of radius Δρ < 75 μm for m � 3 and
Δρ < 42 μm for m � 0, where the absolute value of the
DOC is significant and reliable phase measurements could
be made.

The DOC of the m � 3 solution has an azimuthal perio-
dicity of 60° in the side lobe pattern, whereas the phase in the
central region Δρ < 35 μm is constant. These features, as well
as the sharp variations of jμ�Δx,Δy�j, are evident in the mea-
surements even though there are some distortions due to
experimental imperfections particularly in the phase measure-
ments within the central region of Fig. 7(e). The abrupt 2π
phase transitions in the central region of Fig. 7(f ) are due to
wrapping into the �−π, π� interval.
B. Propagation of Beam Profiles
The propagation of beams that the DOCs in Fig. 7 generate is
illustrated in Figs. 8 and 9, where the experimental and simu-
lated results are shown in top and bottom rows, respectively.
The experimental results show some speckle-like granularity
that could be contributed by the finite coherence area at plane
A, where the field is not strictly speaking globally incoherent as
assumed in the model. In particular, the discrepancies caused
by the granularity and additional side lobes in the coherence

Fig. 5. Measured absolute value of the spatial DOC μ�Δx, z0�
(blue) and the spectral density S�x, z0� (orange) at plane A.

Fig. 6. Spatially varying transmission efficiency η−1 of the designed
metasurface for the RAP beams of order (a) m � 3 and (b) m � 0.

Fig. 7. Measured and simulated complex degrees of source-plane
spatial coherence of the RAP beam with m � 3 (top row) and
m � 0 (bottom row). (a)–(d) Absolute values and (e)–(h) phases of
μ�Δx,Δy�. Here, (a), (b), (e), and (f ) are the measured results, while
(c), (d), (g), and (h) are the simulated results.

Fig. 8. Illustration of propagation characteristics of RAP-beam with
m � 3. The measured intensity profiles at four different propagation
distances are in the top row, and the simulation is in the bottom row.
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function of the m � 3 RAP beam in the Fig. 7 upper panel are
visible in the measured intensity profiles in Fig. 8 at
z � 90 mm and z � 140 mm.

The evolution of the RAP beam with m � 3 is shown in
Fig. 8 at the source plane and three different propagation dis-
tances. We assume parameters R � 1∕4.5 and q � 1∕40,
which gives zG � 567 mm and zR � 14.2 mm. At z � 0 the
beam shape is Gaussian with a beam waist w0 � 338 μm. As
the propagation distance grows the beam acquires its RAP fea-
tures. The annular m � 0 beam in Fig. 9, with w0 � 210 μm,
R � 1∕7.5, q � 1∕30, zG � 218 mm, and zR � 7.3 mm,
begins to show its dark center at distances z ∼ 10 mm. This
property is preserved throughout further propagation.

6. DISCUSSION

The RAP beams demonstrated here are not the only possible
classes of partially coherent fields that we can generate with the
experimental technique discussed in this paper. While Fourier-
type kernels allow the demonstration of any Schell-model
beam, the use of more general kernels opens the way to produce
more general fields. For instance, metasurfaces acting as vortex
phase filters with transmittance t�ρ� � t�ρ,ϕ� � exp�ilϕ�,
where l is an integer, can be placed at plane B to produce orbital
angular momentum. Likewise, polarizing optical components
can contribute to the linear transformations, allowing the
realization of vector beams. Space-variant imaging systems
with beam shaping or polarization-control metasurfaces (such
as polarization gratings [28,29]) in the intermediate Fourier
plane of a 4F imaging system are options, as are transforma-
tions involving interferometers. For example, a WFI transforms
any Schell-model beam into a corresponding specular beam
[30,31]. We have recently demonstrated such specular trans-
formations using a mirror-based WFI [27].

7. CONCLUSIONS

We have presented an implementation of an experimental sys-
tem for the generation of spatially partially coherent beams with
genuine correlation functions, using quasi-planar metasurfaces.
The method was applied to particular radially quasi-periodic,
azimuthally periodic beams. However, it is applicable to the

generation of any physically realizable beams, whether scalar
or vectorial.
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