• Journal of Semiconductors
  • Vol. 44, Issue 10, 101301 (2023)
Zejie Yu1、3、4、*, He Gao1, Yi Wang2, Yue Yu2, Hon Ki Tsang2, Xiankai Sun2, and Daoxin Dai1、3、4、5
Author Affiliations
  • 1Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
  • 2Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
  • 3Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing 314000, China
  • 4Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing 314000, China
  • 5Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
  • show less
    DOI: 10.1088/1674-4926/44/10/101301 Cite this Article
    Zejie Yu, He Gao, Yi Wang, Yue Yu, Hon Ki Tsang, Xiankai Sun, Daoxin Dai. Fundamentals and applications of photonic waveguides with bound states in the continuum[J]. Journal of Semiconductors, 2023, 44(10): 101301 Copy Citation Text show less
    References

    [1] D Thomson, A Zilkie, J E Bowers et al. Roadmap on silicon photonics. J Opt, 18, 073003(2016).

    [2] C R Doerr. Silicon photonic integration in telecommunications. Front Phys, 3, 37(2015).

    [3] B J Shastri, A N Tait, T Ferreira de Lima et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics, 15, 102(2021).

    [4] Y C Shen, N C Harris, S Skirlo et al. Deep learning with coherent nanophotonic circuits. Nat Photonics, 11, 441(2017).

    [5] J W Wang, F Sciarrino, A Laing et al. Integrated photonic quantum technologies. Nat Photonics, 14, 273(2020).

    [6] A W Elshaari, W Pernice, K Srinivasan et al. Hybrid integrated quantum photonic circuits. Nat Photonics, 14, 285(2020).

    [7] J Q Liu, H Tian, E Lucas et al. Monolithic piezoelectric control of soliton microcombs. Nature, 583, 385(2020).

    [8] C Weimann, M Lauermann, F Hoeller et al. Silicon photonic integrated circuit for fast and precise dual-comb distance metrology. Opt Express, 25, 30091(2017).

    [9] Y J Lu, C Y Wang, J Kim et al. All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing. Nano Lett, 14, 4381(2014).

    [10] X F Liu, Q Zhang, J N Yip et al. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced burstein–moss effect. Nano Lett, 13, 5336(2013).

    [11] R F Oulton, V J Sorger, T Zentgraf et al. Plasmon lasers at deep subwavelength scale. Nature, 461, 629(2009).

    [12] S Grandi, M P Nielsen, J Cambiasso et al. Hybrid plasmonic waveguide coupling of photons from a single molecule. APL Photonics, 4, 086101(2019).

    [13] J S Guo, J Li, C Y Liu et al. High-performance silicon−graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci Appl, 29, 1(2020).

    [14] Y H Ding, Z Cheng, X L Zhu et al. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics, 9, 317(2020).

    [15] Z Li, B Corbett, A Gocalinska et al. Direct visualization of phase-matched efficient second harmonic and broadband sum frequency generation in hybrid plasmonic nanostructures. Light Sci Appl, 9, 180(2020).

    [16] A Agreda, D K Sharma, G Colas des Francs et al. Modal and wavelength conversions in plasmonic nanowires. Opt Express, 29, 15366(2021).

    [17] W Heni, C Haffner, D L Elder et al. Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. Opt Express, 25, 2627(2017).

    [18] T Ferrotti, B Blampey, C Jany et al. Co-integrated 13µm hybrid III-V/silicon tunable laser and silicon Mach-Zehnder modulator operating at 25Gb/S. Opt Express, 24, 30379(2016).

    [19] J Zhou, L J Huang, Z Y Fu et al. Multiplexed simultaneous high sensitivity sensors with high-order mode based on the integration of photonic crystal 1 × 3 beam splitter and three different single-slot PCNCs. Sensors (Basel), 16, 1050(2016).

    [20] P Bettotti. Hybrid materials for integrated photonics. Adv Opt, 2014, 1(2014).

    [21] W Heni, Y Fedoryshyn, B Baeuerle et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat Commun, 10, 1694(2019).

    [22] D X Dai, Y C Shi, S L He et al. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express, 19, 12925(2011).

    [23] R Halir, P J Bock, P Cheben et al. Waveguide sub-wavelength structures: A review of principles and applications. Laser Photonics Rev, 9, 25(2015).

    [24] J W Ma, X Xi, X K Sun. Topological photonic integrated circuits based on valley kink states. Laser Photonics Rev, 13, 1900087(2019).

    [25] T Baba. Slow light in photonic crystals. Nat Photonics, 2, 465(2008).

    [26] S Iwamoto, Y Ota, Y Arakawa. Recent progress in topological waveguides and nanocavities in a semiconductor photonic crystal platform. Opt Mater Express, 11, 319(2021).

    [27] M Ono, M Hata, M Tsunekawa et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics, 14, 37(2020).

    [28] D X Dai, S L He. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express, 17, 16646(2009).

    [29] M B He, M Y Xu, Y X Ren et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 13, 359(2019).

    [30] J von Neumann, E Wigner. On some peculiar discrete eigenvalues. Phys Z, 30, 465(1929).

    [31] C W Hsu, B Zhen, A D Stone et al. Bound states in the continuum. Nat Rev Mater, 1, 16048(2016).

    [32] E N Bulgakov, D N Maksimov. Light guiding above the light line in arrays of dielectric nanospheres. Opt Lett, 41, 3888(2016).

    [33] E N Bulgakov, D N Maksimov. Topological bound states in the continuum in arrays of dielectric spheres. Phys Rev Lett, 118, 267401(2017).

    [34] D A Bykov, E A Bezus, L L Doskolovich. Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings. Phys Rev A, 99, 063805(2019).

    [35] J Gomis-Bresco, D Artigas, L Torner. Anisotropy-induced photonic bound states in the continuum. Nat Photonics, 11, 232(2017).

    [36] C W Hsu, B Zhen, J Lee et al. Observation of trapped light within the radiation continuum. Nature, 499, 188(2013).

    [37] A Kodigala, T Lepetit, Q Gu et al. Lasing action from photonic bound states in continuum. Nature, 541, 196(2017).

    [38] K Koshelev, G Favraud, A Bogdanov et al. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics, 8, 725(2019).

    [39] S Longhi. Optical analog of population trapping in the continuum: Classical and quantum interference effects. Phys Rev A, 79, 023811(2009).

    [40] D C Marinica, A G Borisov, S V Shabanov. Bound states in the continuum in photonics. Phys Rev Lett, 100, 183902(2008).

    [41] F Monticone, A Alù. Embedded photonic eigenvalues in 3D nanostructures. Phys Rev Lett, 112, 213903(2014).

    [42] Y Plotnik, O Peleg, F Dreisow et al. Experimental observation of optical bound states in the continuum. Phys Rev Lett, 107, 183901(2011).

    [43] M V Rybin, K L Koshelev, Z F Sadrieva et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys Rev Lett, 119, 243901(2017).

    [44] S Weimann, Y Xu, R Keil et al. Compact fano states embedded in the continuum of waveguide arrays. Phys Rev Lett, 111, 240403(2013).

    [45] B Zhen, C W Hsu, L Lu et al. Topological nature of optical bound states in the continuum. Phys Rev Lett, 113, 257401(2014).

    [46] Y Chen, Z Shen, X Xiong et al. Mechanical bound state in the continuum for optomechanical microresonators. New J Phys, 18, 063031(2016).

    [47] S Hein, W Koch, L Nannen. Trapped modes and Fano resonances in two-dimensional acoustical duct–cavity systems. J Fluid Mech, 692, 257(2012).

    [48] C M Linton, P McIver. Embedded trapped modes in water waves and acoustics. Wave Motion, 45, 16(2007).

    [49] A Lyapina, D Maksimov, A Pilipchuk et al. Bound states in the continuum in open acoustic resonators. J Fluid Mech, 780, 370(2015).

    [50] Y X Xiao, G C Ma, Z Q Zhang et al. Topological subspace-induced bound state in the continuum. Phys Rev Lett, 118, 166803(2017).

    [51] E N Bulgakov, D N Maksimov, P N Semina et al. Propagating bound states in the continuum in dielectric gratings. J Opt Soc Am B, 35, 1218(2018).

    [52] K Koshelev, S Lepeshov, M K Liu et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys Rev Lett, 121, 193903(2018).

    [53] Y Liang, K Koshelev, F C Zhang et al. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett, 20, 6351(2020).

    [54] E N Bulgakov, A F Sadreev. Bloch bound states in the radiation continuum in a periodic array of dielectric rods. Phys Rev A, 90, 053801(2014).

    [55] Z J Yu, Y Y Tong, H K Tsang et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat Commun, 11, 1(2020).

    [56] Z J Yu, X Xi, J W Ma et al. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342(2019).

    [57] S I Azzam, V M Shalaev, A Boltasseva et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys Rev Lett, 121, 253901(2018).

    [58] C L Zou, J M Cui, F W Sun et al. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photonics Rev, 9, 114(2015).

    [59] Z J Yu, X K Sun. Acousto-optic modulation of photonic bound state in the continuum. Light Sci Appl, 9, 1(2020).

    [60] L L Doskolovich, E A Bezus, D A Bykov. Integrated flat-top reflection filters operating near bound states in the continuum. Photon Res, 7, 1314(2019).

    [61] Z J Yu, X K Sun. Gigahertz acousto-optic modulation and frequency shifting on etchless lithium niobate integrated platform. ACS Photonics, 8, 798(2021).

    [62] Y Wang, Z J Yu, Z Y Zhang et al. Bound-states-in-continuum hybrid integration of 2D platinum diselenide on silicon nitride for high-speed photodetectors. ACS Photonics, 7, 2643(2020).

    [63] Z J Yu, Y Wang, B L Sun et al. Hybrid 2D-material photonics with bound states in the continuum. Adv Optical Mater, 7, 1901306(2019).

    [64] N Dalvand, T G Nguyen, T L Koch et al. Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers. IEEE Photonics Technol Lett, 25, 163(2013).

    [65] N Dalvand, T G Nguyen, R S Tummidi et al. Transition from “magic width” to “anti-magic width” in thin-ridge silicon-on-insulator waveguides, 1(2012).

    [66] A P Hope, T G Nguyen, A Mitchell et al. Quantitative analysis of TM lateral leakage in foundry fabricated silicon rib waveguides. IEEE Photonics Technol Lett, 28, 493(2016).

    [67] M A Webster, R M Pafchek, A Mitchell et al. Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides. IEEE Photonics Technol Lett, 19, 429(2007).

    [68] M Koshiba, K Kakihara, K Saitoh. Reduced lateral leakage losses of TM-like modes in silicon-on-insulator ridge waveguides. Opt Lett, 33, 2008(2008).

    [69] X J Xu, S W Chen, J Z Yu et al. An investigation of the mode characteristics of SOI submicron rib waveguides using the film mode matching method. J Opt A: Pure Appl Opt, 11, 015508(2009).

    [70] T Ako, A Hope, T Nguyen et al. Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides. Opt Express, 23, 2846(2015).

    [71] K Kakihara, K Saitoh, M Koshiba. Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides. J Light Technol, 27, 5492(2009).

    [72] T G Nguyen, R S Tummidi, T L Koch et al. Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers. IEEE Photonics Technol Lett, 21, 486(2009).

    [73] T Ako, J Beeckman, W Bogaerts et al. Tuning the lateral leakage loss of TM-like modes in shallow-etched waveguides using liquid crystals. Appl Opt, 53, 214(2014).

    [74] T G Nguyen, R S Tummidi, T L Koch et al. Lateral leakage in TM-like whispering gallery mode of thin-ridge silicon-on-insulator disk resonators. Opt Lett, 34, 980(2009).

    [75] N Dalvand, T G Nguyen, R S Tummidi et al. Thin-ridge silicon-on-insulator waveguides with directional control of lateral leakage radiation. Opt Express, 19, 5635(2011).

    [76] T G Nguyen, G H Ren, S Schoenhardt et al. Ridge resonance in silicon photonics harnessing bound states in the continuum. Laser Photonics Rev, 13, 1900035(2019).

    [77] E A Bezus, D A Bykov, L L Doskolovich. Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide. Photon Res, 6, 1084(2018).

    [78] M Hammer, L Ebers, J Förstner. Oblique evanescent excitation of a dielectric strip: A model resonator with an open optical cavity of unlimited Q. Opt Express, 27, 9313(2019).

    [79] S T Peng, A A Oliner. Guidance and leakage properties of a class of open dielectric waveguides: Part I - mathematical formulations. IEEE Trans Microw Theory Tech, 29, 843(1981).

    [80] P. Muellner, N. Finger, R. Hainberger. Lateral leakage in symmetric SOI rib-type slot waveguides. Optics Express, 16, 287-294(2008).

    [81] T G Nguyen, R S Tummidi, T L Koch et al. Lateral leakage of TM-like mode in thin-ridge silicon-on-insulator bent waveguides and ring resonators. Opt Express, 18, 7243(2010).

    [82] D X Dai, Z Wang, N Julian et al. Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides. Opt Express, 18, 27404(2010).

    [83] H N Xu, Y C Shi. Silicon-waveguide-integrated high-quality metagrating supporting bound state in the continuum. Laser Photonics Rev, 14, 1900430(2020).

    [84] Y Yu, Z J Yu, L Wang et al. Ultralow-loss etchless lithium niobate integrated photonics at near-visible wavelengths. Adv Optical Mater, 9, 2100060(2021).

    [85] D B Sohn, S Kim, G Bahl. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat Photonics, 12, 91(2018).

    [86] E Gavartin, P Verlot, T J Kippenberg. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat Nanotechnol, 7, 509(2012).

    [87] J C Beugnot, S Lebrun, G Pauliat et al. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre. Nat Commun, 5, 1(2014).

    [88] E H W Chan, R A Minasian. All-optical frequency shifter based on stimulated Brillouin scattering in an optical fiber. IEEE Photonics J, 6, 1(2014).

    [89] M S Kang, A Butsch, P St J Russell. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat Photonics, 5, 549(2011).

    [90] M Santagiustina, S Chin, N Primerov et al. All-optical signal processing using dynamic Brillouin gratings. Sci Rep, 3, 1594(2013).

    [91] K Alexander, N A Savostianova, S A Mikhailov et al. Electrically tunable optical nonlinearities in graphene-covered SiN waveguides characterized by four-wave mixing. ACS Photonics, 4, 3039(2017).

    [92] X C Ge, M Minkov, S H Fan et al. Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide. Npj 2D Mater Appl, 3, 1(2019).

    [93] C T Phare, Y H D Lee, J Cardenas et al. Graphene electro-optic modulator with 30 GHz bandwidth. Nat Photonics, 9, 511(2015).

    [94] Z Q Li, N N Dong, Y X Zhang et al. Invited article: Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber. APL Photonics, 3, 080802(2018).

    Zejie Yu, He Gao, Yi Wang, Yue Yu, Hon Ki Tsang, Xiankai Sun, Daoxin Dai. Fundamentals and applications of photonic waveguides with bound states in the continuum[J]. Journal of Semiconductors, 2023, 44(10): 101301
    Download Citation