• Photonics Research
  • Vol. 3, Issue 4, 133 (2015)
[in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1、*, [in Chinese]1, [in Chinese]2, and [in Chinese]1
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • 2Center for Display Research, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • show less
    DOI: 10.1364/PRJ.3.000133 Cite this Article Set citation alerts
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings[J]. Photonics Research, 2015, 3(4): 133 Copy Citation Text show less
    References

    [1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [3] Y. X. Ren, G. D. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. J. Bao, M. P. J. Lavery, M. Tur, M. A. Neifeld, R. W. Boyd, J. H. Shapiro, A. E. Willner. Adaptive-optics-based simultaneous pre-and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link. Optica, 1, 376-382(2014).

    [4] T. Lei, M. Zhang, Y. R. Li, P. Jia, G. N. Liu, X. G. Xu, Z. H. Li, C. J. Min, J. Lin, C. Y. Yu, H. B. Niu, X. C. Yuan. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [5] G. Molina-Terriza, J. P. Torres, L. Torner. Twisted photons. Nat. Phys., 3, 305-310(2007).

    [6] V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, F. Sciarrino. Complete experimental toolbox for alignment-free quantum communication. Nat. Commun., 3, 961-968(2012).

    [7] D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, G. C. Guo. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett., 114, 050502(2015).

    [8] X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, J. W. Pan. Quantum teleportation of multiple degrees of freedom in a single photon. Nature, 518, 516-519(2015).

    [9] X. L. Wang, J. Chen, Y. N. Li, J. P. Ding, C. S. Guo, H. T. Wang. Optical orbital angular momentum from the curl of polarization. Phys. Rev. Lett., 105, 253602(2010).

    [10] K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett., 12, 3645-3649(2012).

    [11] S. Franke-Arnold, L. Allen, M. J. Padgett. Advances in optical angular momentum. Laser Photon. Rev., 2, 299-313(2008).

    [12] G. Foo, D. M. Palacios, G. A. Swartzlander. Optical vortex coronagraph. Opt. Lett., 30, 3308-3310(2005).

    [13] H. Kogelnik, T. Li. Laser beams and resonators. Appl. Opt., 5, 1550-1567(1966).

    [14] M. A. Clifford, J. Arlt, J. Courtial, K. Dholakia. High-order Laguerre-Gaussian laser modes for studies of cold atoms. Opt. Commun., 156, 300-306(1998).

    [15] M. Granata, C. Buy, R. Ward, M. Barsuglia. Higher-order Laguerre-Gauss mode generation and interferometry for gravitational wave detectors. Phys. Rev. Lett., 105, 231102(2010).

    [16] J. Leach, E. Yao, M. J. Padgett. Observation of the vortex structure of a non-integer vortex beam. New J. Phys., 6, 71-78(2004).

    [17] S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, J. P. Woerdman. Experimental demonstration of fractional orbital angular momentum entanglement of two photons. Phys. Rev. Lett., 95, 240501(2005).

    [18] L. X. Chen, J. J. Lei, J. Romero. Quantum digital spiral imaging. Light Sci. Appl., 3, e153(2014).

    [19] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun., 112, 321-327(1994).

    [20] G. Ruffato, M. Massari, F. Romanato. Generation of high-order Laguerre-Gaussian modes by means of spiral phase plates. Opt. Lett., 39, 5094-5097(2014).

    [21] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [22] S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, E. Santamato. Tunable liquid crystal q-plates with arbitrary topological charge. Opt. Express, 19, 4085-4090(2011).

    [23] N. R. Heckenberg, R. McDuff, C. P. Smith, A. G. White. Generation of optical phase singularities by computer-generated holograms. Opt. Lett., 17, 221-223(1992).

    [24] J. Arlt, K. Dholakia, L. Allen, M. J. Padgett. The production of multiringed Laguerre-Gaussian modes by computer-generated holograms. J. Mod. Opt., 45, 1231-1237(1998).

    [25] S. J. Ge, W. Ji, G. X. Cui, B. Y. Wei, W. Hu, Y. Q. Lu. Fast switchable optical vortex generator based on blue phase liquid crystal fork grating. Opt. Mater. Express, 4, 2535-2541(2014).

    [26] Y. J. Liu, X. W. Sun, Q. Wang, D. Luo. Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals. Opt. Express, 15, 16645-16650(2007).

    [27] V. Y. Bazhenov, M. V. Vasnetsov, M. S. Soskin. Laser beams with screw dislocations in their wavefronts. JETP Lett., 52, 429-431(1990).

    [28] N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, T. Hara. Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. J. Opt. Soc. Am. A, 25, 1642-1651(2008).

    [29] Z. C. Zhang, Z. You, D. P. Chu. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci. Appl., 3, e213(2014).

    [30] R. Cao, Y. Yang, J. G. Wang, J. Bu, M. W. Wang, X. C. Yuan. Microfabricated continuous cubic phase plate induced Airy beams for optical manipulation with high power efficiency. Appl. Phys. Lett., 99, 261106(2011).

    [31] H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, Y. Q. Lu. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Opt. Express, 20, 16684-16689(2012).

    [32] B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, Y. Q. Lu. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv. Mater., 26, 1590-1595(2014).

    [33] S. Pancharatnam. Generalized theory of interference and its applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. A, 44, 247-262(1956).

    [34] M. V. Berry. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt., 34, 1401-1407(1987).

    [35] C. Provenzano, P. Pagliusi, G. Cipparrone. Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces. Appl. Phys. Lett., 89, 121105(2006).

    [36] V. Presnyakov, K. Asatryan, T. Galstian, V. Chigrinov. Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer. Opt. Express, 14, 10558-10564(2006).

    [37] H. Choi, J. H. Woo, J. W. Wu, D. W. Kim, T. K. Lim, S. H. Song. Holographic inscription of helical wavefronts in a liquid crystal polarization grating. Appl. Phys. Lett., 91, 141112(2007).

    [38] Y. M. Li, J. Kim, M. J. Escuti. Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings. Appl. Opt., 51, 8236-8245(2012).

    [39] M. Schadt, H. Seiberle, A. Schuster. Optical patterning of multi-domain liquid-crystal. Nature, 381, 212-215(1996).

    [40] I. C. Khoo, S. T. Wu. Optics and Nonlinear Optics of Liquid Crystals(1993).

    [41] M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, C. Spielmann. Strong-field physics with singular light beams. Nat. Phys., 8, 743-746(2012).

    [42] X. T. Gan, P. Zhang, S. Liu, F. J. Xiao, J. L. Zhao. Beam steering and topological transformations driven by interactions between a discrete vortex soliton and a discrete fundamental soliton. Phys. Rev. A, 89, 013844(2014).

    [43] S. T. Wu. Birefringence dispersions of liquid crystals. Phys. Rev. A, 33, 1270-1274(1986).

    [44] L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, Y. Q. Lu. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci. Appl., 4, e253(2015).

    CLP Journals

    [1] Yanmeng Dai, Yuquan Zhang, Youpeng Xie, Dapeng Wang, Xianyou Wang, Ting Lei, Changjun Min, Xiaocong Yuan. Multifunctional geometric phase optical element for high-efficiency full Stokes imaging polarimetry[J]. Photonics Research, 2019, 7(9): 1066

    [2] Jiarui Ren, Weichang Wang, Weiqiang Yang, Conglong Yuan, Kang Zhou, Xiao Li, Alwin Mingwai Tam, Cuiling Meng, Jiatong Sun, Vladimir G. Chigrinov, Hoising Kwok, Xiaoqian Wang, Zhigang Zheng, Dong Shen. Micro-patterned liquid crystal Pancharatnam–Berry axilens[J]. Chinese Optics Letters, 2018, 16(6): 062301

    [3] Bing-Yan Wei, Peng Chen, Shi-Jun Ge, Li-Chao Zhang, Wei Hu, Yan-Qing Lu. Liquid crystal depolarizer based on photoalignment technology[J]. Photonics Research, 2016, 4(2): 0070

    [4] Shuiqin Zheng, Zhenkuan Chen, Qinggang Lin, Yi Cai, Xiaowei Lu, Yanxia Gao, Shixiang Xu, Dianyuan Fan. High-gain amplification for femtosecond optical vortex with mode-control regenerative cavity[J]. Photonics Research, 2020, 8(8): 1375

    [5] Zhenxing Liu, Yuanyuan Liu, Yougang Ke, Yachao Liu, Weixing Shu, Hailu Luo, Shuangchun Wen. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere[J]. Photonics Research, 2017, 5(1): 15

    [6] Huaping Zang, Chenglong Zheng, Quanping Fan, Chuanke Wang, Lai Wei, Leifeng Cao, Xiangru Wang, Erjun Liang. Generation of X-ray vortex with ultra-long depth of focus using axial line-focused spiral zone plates[J]. Chinese Optics Letters, 2018, 16(8): 080501

    [7] Yuan Zhang, Bingyan Wei, Sheng Liu, Peng Li, Xin Chen, Yunlong Wu, Xian’an Dou, Jianlin Zhao. Circular Airy beams realized via the photopatterning of liquid crystals [Invited][J]. Chinese Optics Letters, 2020, 18(8): 080008

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings[J]. Photonics Research, 2015, 3(4): 133
    Download Citation