• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 5, 627 (2021)
Che XU, Lin MENG, Yong YIN*, Liang-Jie BI, Zhi-Wei CHANG, Hai-Long LI, and Bin WANG
Author Affiliations
  • School of Electronic Science and Engineering,University of Electronic Science and Technology of China Chengdu610054,,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.05.008 Cite this Article
    Che XU, Lin MENG, Yong YIN, Liang-Jie BI, Zhi-Wei CHANG, Hai-Long LI, Bin WANG. Analysis of oscillation-starting characteristics in millimeter wave extended interaction oscillators[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 627 Copy Citation Text show less
    References

    [1] A ROITMAN, D BERRY, B STEER. State-of-the-Art W-Band Extended Interaction Klystron for the CloudSat Program. IEEE, 52, 895-8(2005).

    [2] D BERRY, P HOROYSKI, M HYTTINEN et al. Extended interaction klystrons for submillimeter applications; proceedings of the 30th International Conference on Infrared and Millimeter Waves, F, 2005.

    [3] Z C WANG, X W SHANG, L L CAO et al. Investigation on a W-band high efficiency extended interaction oscillator based on phase re-synchronization technology. Journal of Infrared and Millimeter Waves, 39, 211-20(2020).

    [4] Y YIN, W HE, L ZHANG et al. Simulation and Experiments of a W-Band Extended Interaction Oscillator Based on a Pseudospark-Sourced Electron Beam. IEEE, 63, 512-6(2016).

    [5] Y YIN, W HE, L ZHANG et al. Preliminary design and optimization of a G-band extended interaction oscillator based on a pseudospark-sourced electron beam. Physics of Plasmas, 22(2015).

    [6] G X SHU, H YIN, L ZHANG et al. Demonstration of a Planar W-Band, kW-Level Extended Interaction Oscillator Based on a Pseudospark-Sourced Sheet Electron Beam. IEEE Electron Device Letters, 39, 432-5(2018).

    [7] W HE, L ZHANG, D BOWES et al. Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam. Appl Phys Lett, 107(2015).

    [8] H T CHEN, R KERSTING, G C CHO. Terahertz imaging with nanometer resolution. Appl Phys Lett, 83, 3009-11(2003).

    [9] D CHERNIN, A BURKE, I CHERNYAVSKIY et al. 12.3: Extended Interaction Klystrons for terahertz power amplifiers; proceedings of the In Proc IEEE International Vacuum Electronics Conference, F(2010).

    [10] Z CHANG, L MENG, Y YIN et al. Circuit Design of a Compact 5-kV W-Band Extended Interaction Klystron. IEEE, 65, 1179-84(2018).

    [11] C XU, L MENG, C F HU et al. Analysis of Dual-Frequency Radiation From a G-Band Extended Interaction Oscillator With Double Sheet Beam. IEEE, 66, 3184-9(2019).

    [12] D BERRY, H DENG, R DOBBS et al. Practical Aspects of EIK Technology. IEEE, 61, 1830-5(2014).

    [13] Extended Interaction Klystrons , Communications & Power Industries . Georgetown. Ontario, Canada, Oct. 31(2001). https://www.cpii.com/product.cfm/4/40/156

    [14] L J BI, L MENG, Y YIN et al. Design and Analysis of a High-Order Mode Ladder-Type RF Circuit for Stable Operation in a W-Band Extended Interaction Oscillator. IEEE, 66, 729-35(2019).

    [15] CST Microwave Studio . CST, Darmstadt, Germany(2014).

    [16] C D JOYE, T KIMURA, M HYTTINEN et al. Demonstration of a High Power, Wideband 220-GHz Traveling Wave Amplifier Fabricated by UV-LIGA. IEEE, 61, 1672-8(2014).

    [17] D GAMZINA, L G HIMES, R BARCHFELD et al. Nano-CNC Machining of Sub-THz Vacuum Electron Devices. IEEE, 63, 4067-73(2016).

    [18] G BURT, L ZHANG, D A CONSTABLE et al. A Millimeter-Wave Klystron Upconverter With a Higher Order Mode Output Cavity. IEEE, 64, 3857-62(2017).

    [19] C PAOLONI. Periodically Allocated Reentrant Cavity Klystron. IEEE, 61, 1687-91(2014).

    [20] C XU, B WANG, R B PENG et al. Start current study of a THz sheet beam extended interaction oscillator. Physics of Plasmas, 25, 3103(2018).

    [21] K ZHANG, Z WU, S LIU. Study of An Extended Interaction Oscillator with A Rectangular Reentrance Coupled-cavity in Terahertz Region. Journal of Infrared, Millimeter, and Terahertz Waves, 30, 309-18(2009).

    [22] Y YIN, B WANG, H LI et al. Study of the relation between the surface loss and the field flatness in the EID. International Journal of Electronics, 104, 204-17(2016).

    [23] S DATTA, L KUMAR, B N BASU. A Simple and Accurate Analysis of Conductivity Loss in Millimeter-Wave Helical Slow-Wave Structures. Journal of infrared, 30, 381-92(2009).

    Che XU, Lin MENG, Yong YIN, Liang-Jie BI, Zhi-Wei CHANG, Hai-Long LI, Bin WANG. Analysis of oscillation-starting characteristics in millimeter wave extended interaction oscillators[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 627
    Download Citation