• Journal of Semiconductors
  • Vol. 41, Issue 1, 010301 (2020)
Ning Zhuo, Fengqi Liu, and Zhanguo Wang
Author Affiliations
  • Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.1088/1674-4926/41/1/010301 Cite this Article
    Ning Zhuo, Fengqi Liu, Zhanguo Wang. Quantum cascade lasers: from sketch to mainstream in the mid and far infrared[J]. Journal of Semiconductors, 2020, 41(1): 010301 Copy Citation Text show less
    References

    [1] R Kazarinov, R A Suris. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov Phys Semicond, 5, 707(1971).

    [2] J Faist, F Capasso, D L Sivco et al. Quantum cascade laser. Science, 264, 553(1994).

    [3] G Scamarcio, F Capasso, C Sirtori et al. High-power infrared (8-micrometer wavelength) superlattice lasers. Science, 276, 773(1997).

    [4] R Kohler, A Tredicucci, F Beltram et al. Terahertz semiconductor heterostructure laser. Nature, 417, 156(2002).

    [5] M Beck, D Hofstetter, T Aellen et al. Continuous wave operation of a mid-Infrared semiconductor laser at room temperature. Science, 295, 301(2002).

    [6] M Rochat, D Hofstetter, M Beck et al. Long-wavelength 16 mm, room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition. Appl Phys Lett, 79, 4271(2001).

    [7] G Scalari, L Ajili, J Faist et al. Far-infrared (87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K. Appl Phys Lett, 82, 3165(2003).

    [8] Y Bai, N Bandyopadhyay, S Tsao et al. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl Phys Lett, 98, 181102(2011).

    [9] A Lyakh, R Maulini, A Tsekoun et al. Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency. Opt Express, 20, 24272(2012).

    [10] F Xie, C Caneau, H P Leblanc et al. Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm. IEEE J Quantum Electron, 19, 1200407(2013).

    [11] S Fathololoumi, E Dupont, C E I Chan et al. Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling. Opt Express, 20, 3866(2012).

    [12] L Bosco, M Franckie, G Scalari et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl Phys Lett, 115, 010601(2019).

    [13] M A Belkini, F Capasso, A Belyanin et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat Photonics, 1, 288(2007).

    [14] Q Y Lu, N Bandyopadhyay, S Slivken et al. Continuous operation of a monolithic semiconductor terahertz source at room temperature. Appl Phys Lett, 104, 221105(2014).

    [15] A Hugi, G Villares, B Blaser et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 492, 229(2012).

    [16] Q Lu, D Wu, S Slivken et al. High efficiency quantum cascade laser frequency comb. Sci Rep, 7, 43806(2017).

    [17] D Kazakov, M Piccardo, Y Wang et al. Self-starting harmonic frequency comb generation in a quantum cascade laser. Nat Photonics, 11, 789(2017).

    [18] N Bandyopadhyay, Y Bai, S Tsao et al. Room temperature continuous wave operation of k ~ 3–3.2 μm quantum cascade lasers. Appl Phys Lett, 101, 241110(2012).

    [19] S Niu, J Liu, F Cheng et al. 14 μm quantum cascade lasers based on diagonal transition and nonresonant extraction. Photonics Res, 7, 1244(2019).

    [20] M Bahriz, G Lollia, A N Baranov et al. High temperature operation of far infrared (λ ≈ 20 μm) InAs/AlSb quantum cascade lasers with dielectric waveguide. Opt Express, 23, 1523(2015).

    [21] E Bellotti, K Driscoll, T D Moustakas et al. Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures. Appl Phys Lett, 92, 101112(2008).

    [22] N S Wingreen, C A Stafford. Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser. IEEE J Quantum Electron, 33, 1170(1997).

    [23] B A Burnett, B S Williams. Density matrix model for polarons in a terahertz quantum dot cascade laser. Phys Rev B, 90, 155309(2014).

    [24] N Zhuo, J Zhang, F Wang et al. Room temperature continuous wave quantum dot cascade laser emitting at 7.2 μm. Opt Express, 25, 13807(2017).

    Ning Zhuo, Fengqi Liu, Zhanguo Wang. Quantum cascade lasers: from sketch to mainstream in the mid and far infrared[J]. Journal of Semiconductors, 2020, 41(1): 010301
    Download Citation