• Photonics Research
  • Vol. 11, Issue 7, 1354 (2023)
Naitao Song1、2、3, Qiao Sun1、2, Su Xu4、*, Dongzhi Shan1、2, Yang Tang1、2, Xiaoxi Tian1、2, Nianxi Xu1、2, and Jingsong Gao1、2、5
Author Affiliations
  • 1Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 3College of Da Heng, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • 5Jilin Provincial Key Laboratory of Advanced Optoelectronic Equipment and Instrument Manufacturing Technology, Changchun 130033, China
  • show less
    DOI: 10.1364/PRJ.486613 Cite this Article Set citation alerts
    Naitao Song, Qiao Sun, Su Xu, Dongzhi Shan, Yang Tang, Xiaoxi Tian, Nianxi Xu, Jingsong Gao. Ultrawide-band optically transparent antidiffraction metamaterial absorber with a Thiessen-polygon metal-mesh shielding layer[J]. Photonics Research, 2023, 11(7): 1354 Copy Citation Text show less
    References

    [1] M. Green, Z. Liu, P. Xiang, Y. Liu, M. Zhou, X. Tan, F. Huang, L. Liu, X. Chen. Doped, conductive SiO2 nanoparticles for large microwave absorption. Light Sci. Appl., 7, 87(2018).

    [2] L. Li, P. Zhang, F. Cheng, M. Chang, T. J. Cui. An optically transparent near-field focusing metasurface. IEEE Trans. Microw. Theory Tech., 69, 2015-2027(2021).

    [3] D. Kitayama, Y. Hama, K. Goto, K. Miyachi, T. Motegi, O. Kagaya. Transparent dynamic metasurface for a visually unaffected reconfigurable intelligent surface: controlling transmission/reflection and making a window into an RF lens. Opt. Express, 29, 29292-29307(2021).

    [4] D. Li, Q. Chen, J. Huang, H. Xu, Y. Lu, W. Song. Scalable-manufactured metamaterials for simultaneous visible transmission, infrared reflection, and microwave absorption. ACS Appl. Mater. Interfaces, 14, 33933-33943(2022).

    [5] R. N. Simons, R. Q. Lee. Feasibility study of optically transparent microstrip patch antenna. IEEE Antennas and Propagation Society International Symposium, 2100-2103(1997).

    [6] P. Won, K. K. Kim, H. Kim, J. J. Park, I. Ha, J. Shin, J. Jung, H. Cho, J. Kwon, H. Lee, S. H. Ko. Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater., 33, 2002397(2021).

    [7] K. Ellmer. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics, 6, 809-817(2012).

    [8] K. Mitsubayashi, Y. Wakabayashi, S. Tanimoto, D. Murotomi, T. Endo. Optical-transparent and flexible glucose sensor with ITO electrode. Biosens. Bioelectron., 19, 67-71(2003).

    [9] S. Kim, S. Kim, J. Park, S. Ju, S. Mohammadi. Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry. ACS Nano, 4, 2994-2998(2010).

    [10] L. Ma, H. Xu, Z. Lu, J. Tan. Optically transparent broadband microwave absorber by graphene and metallic rings. ACS Appl. Mater. Interfaces, 14, 17727-17738(2022).

    [11] H. Shi, C. Liu, Q. Jiang, J. Xu. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv. Electron. Mater., 1, 1500017(2015).

    [12] H. Li, H. Dong, Y. Zhang, N. Mou, Y. Xin, R. Deng, L. Zhang. Transparent ultra-wideband double-resonance-layer metamaterial absorber designed by a semiempirical optimization method. Opt. Express, 29, 18446-18457(2021).

    [13] S. K. Singh, M. J. Akhtar, K. K. Kar. Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl. Mater. Interfaces, 10, 24816-24828(2018).

    [14] Y. Xiong, F. Chen, Y. Cheng, H. Luo. Rational design and fabrication of optically transparent broadband microwave absorber with multilayer structure based on indium tin oxide. J. Alloys Compd., 920, 166008(2022).

    [15] R. Deng, K. Zhang, M. Li, L. Song, T. Zhang. Targeted design, analysis and experimental characterization of flexible microwave absorber for window application. Mater. Des., 162, 119-129(2019).

    [16] C. Zhang, Q. Cheng, J. Yang, J. Zhao, T. J. Cui. Broadband metamaterial for optical transparency and microwave absorption. Appl. Phys. Lett., 110, 143511(2017).

    [17] H. Zhong, Y. Han, J. Lin, P. Jin. Pattern randomization: an efficient way to design high-performance metallic meshes with uniform stray light for EMI shielding. Opt. Express, 28, 7008-7017(2020).

    [18] H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, S. Lin. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding. Opt. Lett., 42, 1620-1623(2017).

    [19] K. E. Brassel, D. Reif. A procedure to generate Thiessen polygons. Geogr. Anal., 11, 289-303(1979).

    [20] T. Jang, H. Youn, Y. J. Shin, L. J. Guo. Transparent and flexible polarization-independent microwave broadband absorber. ACS Photon., 1, 279-284(2014).

    [21] J. W. Goodman. Introduction to Fourier Optics(2005).

    Naitao Song, Qiao Sun, Su Xu, Dongzhi Shan, Yang Tang, Xiaoxi Tian, Nianxi Xu, Jingsong Gao. Ultrawide-band optically transparent antidiffraction metamaterial absorber with a Thiessen-polygon metal-mesh shielding layer[J]. Photonics Research, 2023, 11(7): 1354
    Download Citation