• Acta Optica Sinica
  • Vol. 41, Issue 1, 0114005 (2021)
Heping Zeng1、2、3、** and Junsong Peng1、2、*
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 2Chongqing Institute, East China Normal University, Chongqing 401120, China
  • 3Jinan Institute of Quantum Technology, Jinan, Shandong 250101, China
  • show less
    DOI: 10.3788/AOS202141.0114005 Cite this Article Set citation alerts
    Heping Zeng, Junsong Peng. Time-Varying Dynamics of Mode-Locked Fiber Lasers[J]. Acta Optica Sinica, 2021, 41(1): 0114005 Copy Citation Text show less
    References

    [1] Sibbett W, Lagatsky A A. Brown C T A. The development and application of femtosecond laser systems[J]. Optics Express, 20, 6989-7001(2012). http://www.ncbi.nlm.nih.gov/pubmed/22453378

    [2] Akhmediev N, Ankiewicz A A. Dissipative solitons: from optics to biology and medicine[M]. New York: Springer(2008).

    [3] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 7, 868-874(2013).

    [4] Dudley J M, Finot C, Richardson D J et al. Self-similarity in ultrafast nonlinear optics[J]. Nature Physics, 3, 597-603(2007). http://www.nature.com/articles/nphys705

    [5] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 424, 831-838(2003).

    [6] Kerse C. Kalaycıo lu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 537, 84-88(2016).

    [7] Qian F C, Guo Z R, Dong W Q et al. High-precision synchronous femtosecond and picosecond pulse generation[J]. Chinese Journal of Lasers, 47, 1001001(2020).

    [8] Chong A, Buckley J, Renninger W et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 14, 10095-10100(2006).

    [9] Chong A, Renninger W H, Wise F W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 n[J]. Optics Letters, 32, 2408-2410(2007).

    [10] Peng J S, Zhan L, Gu Z C et al. Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion Er-doped laser[J]. IEEE Photonics Technology Letters, 24, 98-100(2012).

    [11] Wise F W, Chong A, Renninger W H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion[J]. Laser & Photonics Review, 2, 58-73(2008).

    [12] Chichkov N B, Hausmann K, Wandt D et al. 50 fs pulses from an all-normal dispersion erbium fiber oscillator[J]. Optics Letters, 35, 3081-3083(2010).

    [13] Zhao L M, Lu C, Tam H Y et al. High fundamental repetition rate fiber lasers operated in strong normal dispersion regime[J]. IEEE Photonics Technology Letters, 21, 724-726(2009). http://ieeexplore.ieee.org/document/4804790

    [14] Wu X, Tang D Y, Zhang H et al. Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser[J]. Optics Express, 17, 5580-5584(2009).

    [15] Lecaplain C, Ortac B, Hideur A et al. 90 nJ energy femtosecond fiber-based chirped-pulse oscillator[C]∥CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, June 14-19, 2009, Munich, Germany., 10827341(2009).

    [16] Renninger W H, Chong A, Wise F W. Dissipative solitons in normal-dispersion fiber lasers[J]. Physical Review A, 77, 023814(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000007000003000019000001&idtype=cvips&gifs=Yes

    [17] Peng J S, Zhan L, Luo S Y et al. Passive harmonic mode-locking of dissipative solitons in a normal-dispersion Er-doped fiber laser[J]. Journal of Lightwave Technology, 31, 2709-2714(2013).

    [18] Tarasov N, Perego A M, Churkin D V et al. Mode-locking via dissipative Faraday instability[J]. Nature Communications, 7, 12441(2016). http://www.nature.com/articles/ncomms12441

    [19] Liu Z W, Ziegler Z M, Wright L G et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 4, 649-654(2017).

    [20] Nie M, Wang J. -08-29)[2020-09-30]. https:∥arxiv., org/abs/1908, 11461(2019).

    [21] Poeydebat E, Scol F, Vanvincq O et al. All-fiber Mamyshev oscillator with high average power and harmonic mode-locking[J]. Optics Letters, 45, 1395-1398(2020). http://www.researchgate.net/publication/339280431_All-fiber_Mamyshev_oscillator_with_high_average_power_and_harmonic-mode-locking

    [22] Olivier M, Boulanger V, Guilbert-Savary F et al. Femtosecond fiber Mamyshev oscillator at 1550 nm[J]. Optics Letters, 44, 851-854(2019). http://www.researchgate.net/publication/330854362_Femtosecond_fiber_Mamyshev_oscillator_at_1550_nm

    [23] Bao H L, Cooper A, Rowley M et al. Laser cavity-soliton microcombs[J]. Nature Photonics, 13, 384-389(2019).

    [24] Ding Z X, Huang Z N, Chen Y et al. All-fiber ultrafast laser generating gigahertz-rate pulses based on a hybrid plasmonic microfiber resonator[J]. Advanced Photonics, 2, 026002(2020). http://www.opticsjournal.net/Articles/Abstract?aid=OJ88e4e43128b2b53c

    [25] Li R H, Ma Z H, Tang C T et al. Synchronous spectral overlapping multi-wavelength pulsed fiber laser based on Mamyshev cavity[J]. Chinese Journal of Lasers, 47, 0801002(2020).

    [26] Oktem B, Ülgüdür C, Ilday F Ö. Soliton-similariton fibre laser[J]. Nature Photonics, 4, 307-311(2010). http://smartsearch.nstl.gov.cn/paper_detail.html?id=f4baaeab2080f90965e1e800a3a959e6

    [27] Peng J S, Zhan L, Gu Z C et al. Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser[J]. Physical Review A, 86, 033808(2012). http://www.oalib.com/paper/3603324

    [28] Peng J. Gain dependent pulse regimes transitions in a dissipative dispersion-managed fibre laser[J]. Optics Express, 24, 3046-3054(2016).

    [29] Peng J, Boscolo S. Filter-based dispersion-managed versatile ultrafast fibre laser[J]. Scientific Reports, 6, 25995(2016). http://www.ncbi.nlm.nih.gov/pubmed/27183882

    [30] Nakazawa M, Yoshida M, Hirooka T. The Nyquist laser[J]. Optica, 1, 15-22(2014).

    [31] Soto M A, Alem M, Amin Shoaie M et al. Optical sinc-shaped Nyquist pulses of exceptional quality[J]. Nature Communications, 4, 2898(2013). http://www.ncbi.nlm.nih.gov/pubmed/24301610

    [32] Liu W, Fan J T, Xie C et al. Programmable controlled mode-locked fiber laser using a digital micromirror device[J]. Optics Letters, 42, 1923-1926(2017). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-42-10-1923

    [33] Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 7, 102-112(2013). http://www.nature.com/nphoton/journal/v7/n2/abs/nphoton.2012.359.html

    [34] Mahjoubfar A, Churkin D V, Barland S et al. Time stretch and its applications[J]. Nature Photonics, 11, 341-351(2017). http://www.nature.com/nphoton/journal/v11/n6/full/nphoton.2017.76.html

    [35] Tikan A, Bielawski S, Szwaj C et al. Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography[J]. Nature Photonics, 12, 228-234(2018).

    [36] Salem R, Foster M A, Turner A C et al. Optical time lens based on four-wave mixing on a silicon chip[J]. Optics Letters, 33, 1047-1049(2008).

    [37] Kolner B H, Nazarathy M. Temporal imaging with a time lens[J]. Optics Letters, 14, 630-632(1989). http://www.onacademic.com/detail/journal_1000035240246010_3277.html

    [38] Herink G, Jalali B, Ropers C et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate[J]. Nature Photonics, 10, 321-326(2016).

    [39] Peng J S, Sorokina M, Sugavanam S et al. Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers[J]. Communications Physics, 1, 20(2018). http://www.nature.com/articles/s42005-018-0022-7

    [40] Liu X, Popa D, Akhmediev N. Revealing the transition dynamics from Q switching to mode locking in a soliton laser[J]. Physical Review Letters, 123, 093901(2019). http://www.ncbi.nlm.nih.gov/pubmed/31524444

    [41] Liu X M, Pang M. Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers[J]. Laser & Photonics Reviews, 13, 1800333(2019).

    [42] Chen H J, Liu M, Yao J et al. Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion[J]. Optics Express, 26, 2972-2982(2018). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-26-3-2972

    [43] Wang Z, Kanagaraj N, Coillet A et al. Buildup of incoherent dissipative solitons in ultrafast fiber lasers[J]. Physical Review Research, 2, 013101(2020).

    [44] Zhou Y, Ren Y, Shi J et al. Buildup and dissociation dynamics of dissipative optical soliton molecules[J]. Optica, 7, 965-972(2020).

    [45] Herink G, Kurtz F, Jalali B et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules[J]. Science, 356, 50-54(2017).

    [46] Krupa K, Nithyanandan K, Andral U et al. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules[J]. Physical Review Letters, 118, 243901(2017). http://d.wanfangdata.com.cn/periodical/331b81f99f5841278500d0e08fbd737b

    [47] Peng J S, Zeng H P. Build-up of dissipative optical soliton molecules via diverse soliton interactions[J]. Laser & Photonics Reviews, 12, 1800009(2018). http://onlinelibrary.wiley.com/doi/full/10.1002/lpor.201800009

    [48] Peng J S, Zeng H P. Dynamics of soliton molecules in a normal-dispersion fiber laser[J]. Optics Letters, 44, 2899-2902(2019). http://www.researchgate.net/publication/333487458_Dynamics_of_soliton_molecules_in_a_normal-dispersion_fiber_laser

    [49] Liu X, Yao X, Cui Y. Real-time observation of the buildup of soliton molecules[J]. Physical Review Letters, 121, 023905(2018). http://www.researchgate.net/publication/326362404_real-time_observation_of_the_buildup_of_soliton_molecules

    [50] Wang Z Q, Nithyanandan K, Coillet A et al. Optical soliton molecular complexes in a passively mode-locked fibre laser[J]. Nature Communications, 10, 830(2019).

    [51] Wang Z, Wang Z, Liu Y et al. Self-organized compound pattern and pulsation of dissipative solitons in a passively mode-locked fiber laser[J]. Optics Letters, 43, 478-481(2018). http://arxiv.org/abs/1706.07172

    [52] Wang Z, Wang X, Song Y et al. Generation and pulsating behaviors of loosely bound solitons in a passively mode-locked fiber laser[J]. Physical Review A, 101, 013825(2020).

    [53] Wei Y, Li B W, Wei X M et al. Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser[J]. Applied Physics Letters, 112, 081104(2018). http://adsabs.harvard.edu/abs/2018ApPhL.112h1104W

    [54] Shi H S, Song Y J, Wang C et al. Observation of subfemtosecond fluctuations of the pulse separation in a soliton molecule[J]. Optics Letters, 43, 1623-1626(2018). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-43-7-1623

    [55] Luo Y, Xia R, Shum P et al. Real-time dynamics of soliton triplets in fiber lasers[J]. Photonics Research, 8, 884-891(2020). http://www.opticsjournal.net/Articles/Abstract?aid=OJ6f01334b3fb57a32

    [56] Luo Y, Xia R, Shum P et al. Experimental observation of shaking soliton molecules in a dispersion-managed fiber laser[J]. Optics Letters, 45, 1551-1554(2020). http://www.researchgate.net/publication/339343104_Experimental_observation_of_shaking_soliton_molecules_in_a_dispersion-managed_fiber_laser

    [57] Pu G, Yi L, Zhang L et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis[J]. Light, Science & Applications, 9, 13(2020).

    [58] Zhou F, Cai Y, Zou D F et al. Internal dynamic detection of soliton molecules in Ti∶Sapphire femtosecond laser[J]. Acta Physica Sinica, 69, 084202(2020).

    [59] Peng J S, Boscolo S, Zhao Z H et al. 5(11): eaax1110(2019).

    [60] Peng J S, Zeng H P. Triple-state dissipative soliton laser via ultrafast self-parametric amplification[J]. Physical Review Applied, 11, 044068(2019). http://www.researchgate.net/publication/332582994_Triple-State_Dissipative_Soliton_Laser_Via_Ultrafast_Self-Parametric_Amplification

    [61] Xian T, Zhan L, Wang W et al. Subharmonic entrainment breather solitons in ultrafast lasers[J]. Physical Review Letters, 125, 163901(2020).

    [62] Runge A F J, Broderick N G R, Erkintalo M. Observation of soliton explosions in a passively mode-locked fiber laser[J]. Optica, 2, 36-39(2015).

    [63] Krupa K, Nithyanandan K, Grelu P. Vector dynamics of incoherent dissipative optical solitons[J]. Optica, 4, 1239-1244(2017).

    [64] Yu Y, Luo Z C, Kang J Q et al. Mutually ignited soliton explosions in a fiber laser[J]. Optics Letters, 43, 4132-4135(2018).

    [65] Suzuki M, Boyraz O, Asghari H et al. Spectral periodicity in soliton explosions on a broadband mode-locked Yb fiber laser using time-stretch spectroscopy[J]. Optics Letters, 43, 1862-1865(2018). http://www.ncbi.nlm.nih.gov/pubmed/29652384

    [66] Liu M, Luo A P, Yan Y R et al. Successive soliton explosions in an ultrafast fiber laser[J]. Optics Letters, 41, 1181-1184(2016).

    [67] Du Y Q, Shu X W. Dynamics of soliton explosions in ultrafast fiber lasers at normal-dispersion[J]. Optics Express, 26, 5564-5575(2018).

    [68] Runge A F J, Broderick N G R, Erkintalo M. Dynamics of soliton explosions in passively mode-locked fiber lasers[J]. Journal of the Optical Society of America B, 33, 46-53(2015). http://www.opticsinfobase.org/abstract.cfm?uri=josab-33-1-46

    [69] Peng J S, Zeng H P. Soliton collision induced explosions in a mode-locked fibre laser[J]. Communications Physics, 2, 34(2019). http://www.nature.com/articles/s42005-019-0134-8

    [70] Wei Z W, Liu M, Cui H et al. Recent progress of soliton transient dynamics in ultrafast fiber lasers[J]. Laser & Optoelectronics Progress, 56, 070006(2019).

    [71] Nguyen J H V, Luo D, Hulet R G. Formation of matter-wave soliton trains by modulational instability[J]. Science, 356, 422-426(2017).

    [72] Ryczkowski P, Närhi M, Billet C et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser[J]. Nature Photonics, 12, 221-227(2018). http://www.nature.com/articles/s41566-018-0106-7

    [73] Descalzi O, Cisternas J, Escaff D et al. Noise induces partial annihilation of colliding dissipative solitons[J]. Physical Review Letters, 102, 188302(2009). http://www.ncbi.nlm.nih.gov/pubmed/19518916

    [74] Królikowski W, Luther-Davies B, Denz C et al. Annihilation of photorefractive solitons[J]. Optics Letters, 23, 97-99(1998).

    [75] Clerc M G, Coulibaly S, Mujica N et al. Soliton pair interaction law in parametrically driven Newtonian fluid[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 3213-3226(2009). http://www.ncbi.nlm.nih.gov/pubmed/19620119

    [76] Jang J K, Erkintalo M, Luo K et al. Controlled merging and annihilation of localised dissipative structures in an AC-driven damped nonlinear Schrödinger system[J]. New Journal of Physics, 18, 033034(2016). http://arxiv.org/abs/1504.07231

    [77] Stratmann M, Pagel T, Mitschke F. Experimental observation of temporal soliton molecules[J]. Physical Review Letters, 95, 143902(2005). http://europepmc.org/abstract/med/16241654

    [78] Grelu P, Belhache F, Gutty F et al. Phase-locked soliton pairs in a stretched-pulse fiber laser[J]. Optics Letters, 27, 966-968(2002).

    [79] Pang M, He W, Jiang X et al. All-optical bit storage in a fibre laser by optomechanically bound states of solitons[J]. Nature Photonics, 10, 454-458(2016).

    [80] Komarov A, Komarov K, Sanchez F et al. Quantization of binding energy of structural solitons in passive mode-locked fiber lasers[J]. Physical Review A, 79, 033807(2009). http://adsabs.harvard.edu/abs/2009PhRvA..79c3807K

    [81] Zavyalov A, Lliew R, Egorov O et al. Discrete family of dissipative soliton pairs in mode-locked fiber lasers[J]. Physical Review A, 79, 053841(2009). http://www.oalib.com/paper/3252728

    [82] Zavyalov A, Lliew R, Egorov O et al. Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers[J]. Physical Review A, 80, 043829(2009). http://adsabs.harvard.edu/abs/2009PhRvA..80d3829Z

    [83] Afanasjev V V, Akhmediev N. Soliton interaction in nonequilibrium dynamical systems[J]. Physical Review E, 53, 6471-6475(1996). http://journals.aps.org/pre/abstract/10.1103/PhysRevE.53.6471

    [84] Akhmediev N N, Korneev V I. Modulation instability and periodic solutions of the nonlinear Schrödinger equation[J]. Theoretical and Mathematical Physics, 69, 1089-1093(1986).

    [85] Kibler B, Fatome J, Finot C et al. The Peregrine soliton in nonlinear fibre optics[J]. Nature Physics, 6, 790-795(2010). http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2010NatPh...6..790K

    [86] Mussot A, Naveau C, Conforti M et al. Fibre multi-wave mixing combs reveal the broken symmetry of Fermi-Pasta-Ulam recurrence[J]. Nature Photonics, 12, 303-308(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=44daa8aeb191cfa6afd8f944480fd709

    [87] Yu M, Jang J K, Okawachi Y et al. Breather soliton dynamics in microresonators[J]. Nature Communications, 8, 14569(2017). http://europepmc.org/abstract/MED/28232720

    [88] Lucas E, Karpov M, Guo H et al. Breathing dissipative solitons in optical microresonators[J]. Nature Communications, 8, 736(2017). http://europepmc.org/abstract/MED/28963496

    [89] Bao C Y. Jaramillo-Villegas J A, Xuan Y, et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator[J]. Physical Review Letters, 117, 163901(2016).

    [90] Soto-Crespo J, Devine N, Akhmediev N. Integrable turbulence and rogue waves: breathers or solitons?[J]. Physical Review Letters, 116, 103901(2016). http://www.ncbi.nlm.nih.gov/pubmed/27015481

    [91] Suret P, Koussaifi R E, Tikan A et al. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy[J]. Nature Communications, 7, 13136(2016). http://europepmc.org/articles/PMC5059780/

    [92] Dudley J M, Dias F, Erkintalo M et al. Instabilities, breathers and rogue waves in optics[J]. Nature Photonics, 8, 755-764(2014). http://www.nature.com/articles/nphoton.2014.220

    [93] Liao P C, Zou K H, Bao C J et al. Chip-scale dual-comb source using a breathing soliton for an increased resolution. [C]∥Conference on Lasers and Electro-Optics, San Jose, California. Washington, D.C.: OSA, JTh5A, 4(2018).

    [94] Chang W. Soto-Crespo J M, Vouzas P, et al. Extreme soliton pulsations in dissipative systems[J]. Physical Review E, 92, 022926(2015).

    [95] Siegman A. Lasers[M]. Mill Valley: University Science books(1986).

    [96] Soto-Crespo J M, Akhmediev N, Ankiewicz A et al. Pulsating, creeping, and erupting solitons in dissipative systems[J]. Physical Review Letters, 85, 2937-2940(2000). http://www.ncbi.nlm.nih.gov/pubmed/11005972

    [97] Cundiff S T, Soto-Crespo M, Akhmediev N. Experimental evidence for soliton explosions[J]. Physical Review Letters, 88, 073903(2002). http://europepmc.org/abstract/MED/11863898

    [98] Haus H, Ippen E P, Tamura K et al. Additive-pulse modelocking in fiber lasers[J]. IEEE Journal of Quantum Electronics, 30, 200-208(1994).

    [99] Turitsyn S K, Bednyakova A E, Fedoruk M P et al. Inverse four-wave mixing and self-parametric amplification in optical fibre[J]. Nature Photonics, 9, 608-614(2015).

    [100] Soto-Crespo J M, Grelu P, Akhmediev N. Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers[J]. Physical Review E, 84, 016604(2011). http://www.ncbi.nlm.nih.gov/pubmed/21867331

    [101] Lecaplain C, Grelu P. Soto-Crespo J M, et al. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser[J]. Physical Review Letters, 108, 233901(2012).

    [102] Peng J, Tarasov N, Sugavanam S et al. Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser[J]. Optics Express, 24, 21256-21263(2016).

    [103] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 6, 84-92(2012). http://www.irgrid.ac.cn/handle/1471x/461488

    [104] Shih M F, Segev M. Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons[J]. Optics Letters, 21, 1538-1540(1996).

    [105] Królikowski W, Holmstrom S A. Fusion and birth of spatial solitons upon collision[J]. Optics Letters, 22, 369-371(1997).

    [106] Akhmediev N. Soto-Crespob J M, Grapinetc M, et al. Dissipative soliton interactions inside a fiber laser cavity[J]. Optical Fiber Technology, 11, 209-228(2005).

    [107] Roy V, Olivier M, Babin F et al. Dynamics of periodic pulse collisions in a strongly dissipative-dispersive system[J]. Physical Review Letters, 94, 203903(2005).

    [108] Zhang H, Tang D Y, Wu X et al. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser[J]. Optics Express, 17, 12692-12697(2009).

    [109] Friberg S R. Soliton fusion and steering by the simultaneous launch of two different-color solitons[J]. Optics Letters, 16, 1484-1486(1991).

    [110] Meng F C, Lapre C, Billet C et al. Instabilities in a dissipative soliton-similariton laser using a scalar iterative map[J]. Optics Letters, 45, 1232-1235(2020). http://www.researchgate.net/publication/338964930_Instabilities_and_intermittence_in_a_dissipative_soliton-similariton_laser_using_a_scalar_iterative_map

    [111] Liu M, Li T J, Luo A P et al. “Periodic” soliton explosions in a dual-wavelength mode-locked Yb-doped fiber laser[J]. Photonics Research, 8, 246-251(2020).

    [112] Peng J, Zeng H. Experimental observations of breathing dissipative soliton explosions[J]. Physical Review Applied, 12, 034052(2019).

    [113] Chabchoub A, Hoffmann N P, Onorato M et al. Super rogue waves: observation of a higher-order breather in water waves[J]. Physical Review X, 2, 011015(2012).

    [114] Saint-Jalm R, Castilho P, Cerf L et al. Dynamical symmetry and breathers in a two-dimensional Bose gas[J]. Physical Review X, 9, 021035(2019). http://arxiv.org/abs/1903.04528v1

    Heping Zeng, Junsong Peng. Time-Varying Dynamics of Mode-Locked Fiber Lasers[J]. Acta Optica Sinica, 2021, 41(1): 0114005
    Download Citation