• Laser & Optoelectronics Progress
  • Vol. 59, Issue 6, 0617026 (2022)
Ying Ji1、*, Lingran Gong1, Shuang Fu2, and Yawei Wang1
Author Affiliations
  • 1School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang , Jiangsu 212013, China
  • 2Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen , Guangdong 518055, China
  • show less
    DOI: 10.3788/LOP202259.0617026 Cite this Article Set citation alerts
    Ying Ji, Lingran Gong, Shuang Fu, Yawei Wang. Automatic Phase Recognition Method Based on Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617026 Copy Citation Text show less
    References

    [1] Bhaduri B, Pham H, Mir M et al. Diffraction phase microscopy with white light[J]. Optics Letters, 37, 1094-1096(2012).

    [2] Ding H, Nguyen F, Boppart S A et al. Optical properties of tissues quantified by Fourier-transform light scattering[J]. Optics Letters, 34, 1372-1374(2009).

    [3] Masters B R. Quantitative phase imaging of cells and tissues[J]. Journal of Biomedical Optics, 17, 029901(2012).

    [4] Sridharan S, Macias V, Tangella K et al. Prediction of prostate cancer recurrence using quantitative phase imaging: validation on a general population[J]. Scientific Reports, 6, 33818(2016).

    [5] Lee K, Kim K, Jung J et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications[J]. Sensors, 13, 4170-4191(2013).

    [6] Wang F, Wang H, Bian Y M et al. Applications of deep learning in computational imaging[J]. Acta Optica Sinica, 40, 0111002(2020).

    [7] Zuo C, Feng S J, Zhang X Y et al. Deep learning based computational imaging: status, challenges, and future[J]. Acta Optica Sinica, 40, 0111003(2020).

    [8] Jo Y, Cho H, Lee S Y et al. Quantitative phase imaging and artificial intelligence: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-14(2019).

    [9] Rivenson Y, Liu T, Wei Z et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning[J]. Light, Science & Applications, 8, 23(2019).

    [10] Majeed H, Sridharan S, Mir M et al. Quantitative phase imaging for medical diagnosis[J]. Journal of Biophotonics, 10, 177-205(2017).

    [11] Majeed H, Nguyen T H, Kandel M E et al. Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM)[J]. Scientific Reports, 8, 6875(2018).

    [12] Nguyen T H, Sridharan S, Macias V et al. Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning[J]. Journal of Biomedical Optics, 22, 36015(2017).

    [13] Trujillo C, Garcia-Sucerquia J. Automatic detection and counting of phase objects in raw holograms of digital holographic microscopy via deep learning[J]. Optics and Lasers in Engineering, 120, 13-20(2019).

    [14] Wang P, Liu R, Xin X J et al. Scene classification of optical remote sensing images based on residual networks[J]. Laser & Optoelectronics Progress, 58, 0210001(2021).

    [15] Sawaf F, Groves R M. Phase discontinuity predictions using a machine-learning trained kernel[J]. Applied Optics, 53, 5439-5447(2014).

    [16] Spoorthi G E, Gorthi S, Gorthi R K S S. PhaseNet: a deep convolutional neural network for two-dimensional phase unwrapping[J]. IEEE Signal Processing Letters, 26, 54-58(2019).

    [17] Zhang J, Tian X, Shao J et al. Phase unwrapping in optical metrology via denoised and convolutional segmentation networks[J]. Optics Express, 27, 14903-14912(2019).

    [18] PhaseView F. Label-free Digital Cell Imager: Biophase[EB/OL]. http://phaseview.com/pdf/PhaseView.BioPhase.pdf

    [19] Salamon J, Bello J P. Deep convolutional neural networks and data augmentation for environmental sound classification[J]. IEEE Signal Processing Letters, 24, 279-283(2017).

    [20] LeCun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [21] Srivastava N, Hinton G, Krizhevsky A et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 15, 1929-1958(2014).

    [22] Kingma D, Ba J. Adam: a method for stochastic optimization[EB/OL]. https://arxiv.org/abs/1412.6980v5

    [23] Raina R, Madhavan A, Ng A Y. Large-scale deep unsupervised learning using graphics processors[C], 873-880(2009).

    [24] Li W, Cheng S, Qian K et al. Automatic recognition and classification system of thyroid nodules in CT images based on CNN[J]. Computational Intelligence and Neuroscience, 2021, 5540186(2021).

    [25] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [26] Cortes C, Mohri M, Rostamizadeh A. L2 regularization for learning kernels[C], 109-116(2009).

    [27] Jaiswal M, Sharmay V, Sharmaz A et al. Transfer learning with L2 norm regularization for classifying static two hand Hindi sign language gestures[C], 44-48(2020).

    Ying Ji, Lingran Gong, Shuang Fu, Yawei Wang. Automatic Phase Recognition Method Based on Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617026
    Download Citation