• Photonics Research
  • Vol. 9, Issue 6, 916 (2021)
Anton Alexeev1, Jean-Paul M. G. Linnartz1、2, Kumar Arulandu2, and Xiong Deng1、*
Author Affiliations
  • 1Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
  • 2Signify (Philips Lighting) Research, HTC 34 (WB), 5656 AE Eindhoven, The Netherlands
  • show less
    DOI: 10.1364/PRJ.416269 Cite this Article Set citation alerts
    Anton Alexeev, Jean-Paul M. G. Linnartz, Kumar Arulandu, Xiong Deng. Characterization of dynamic distortion in LED light output for optical wireless communications[J]. Photonics Research, 2021, 9(6): 916 Copy Citation Text show less
    References

    [1] J. B. Carruthers. Wireless infrared communications. Wiley Encyclopedia of Telecommunications(2003).

    [2] M. Kavehrad. Sustainable energy-efficient wireless applications using light. IEEE Commun. Mag., 48, 66-73(2010).

    [3] T. Komine, M. Nakagawa. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron., 50, 100-107(2004).

    [4] H. Haas. High-speed wireless networking using visible light. SPIE Newsroom(2013).

    [5] L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, L. Gyongyosi. Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless. Proc. IEEE, 100, 1853-1888(2012).

    [6] R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Dohler, P. Heremans. Large-signal-modulation of high-efficiency light-emitting diodes for optical communication. IEEE J. Quantum Electron., 36, 1445-1453(2000).

    [7] X. Deng, S. Mardanikorani, Y. Wu, K. Arulandu, B. Chen, A. M. Khalid, J.-P. M. G. Linnartz. Mitigating LED nonlinearity to enhance visible light communications. IEEE Trans. Commun., 66, 5593-5607(2018).

    [8] J.-P. M. G. Linnartz, X. Deng, A. Alexeev, S. Mardanikorani. Wireless communication over an LED channel. IEEE Commun. Mag., 58, 77-82(2020).

    [9] C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, S. P. DenBaars. 2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system. Opt. Express, 23, 29779-29787(2015).

    [10] I. Dursun, C. Shen, M. R. Parida, J. Pan, S. P. Sarmah, D. Priante, N. Alyami, J. Liu, M. I. Saidaminov, M. S. Alias, A. L. Abdelhady, T. K. Ng, O. F. Mohammed, B. S. Ooi, O. M. Bakr. Perovskite nanocrystals as a color converter for visible light communication. ACS Photon., 3, 1150-1156(2016).

    [11] D. C. O’Brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, S. Randel. Visible light communications: challenges and possibilities. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 1-5(2008).

    [12] H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, D. C. O’Brien. Visible light communication using a blue GaN μLED and fluorescent polymer color converter. IEEE Photon. Technol. Lett., 26, 2035-2038(2014).

    [13] M. T. Sajjad, P. P. Manousiadis, H. Chun, D. A. Vithanage, S. Rajbhandari, A. L. Kanibolotsky, G. Faulkner, D. Obrien, P. J. Skabara, I. D. Samuel, G. A. Turnbull. Novel fast color-converter for visible light communication using a blend of conjugated polymers. ACS Photon., 2, 194-199(2015).

    [14] G. M. Farinola, R. Ragni. Electroluminescent materials for white organic light emitting diodes. Chem. Soc. Rev., 40, 3467-3482(2011).

    [15] H. L. Minh, Z. Ghassemlooy, D. O’Brien, G. Faulkner. Indoor gigabit optical wireless communications: challenges and possibilities. 12th International Conference on Transparent Optical Networks (ICTON), 1-6(2010).

    [16] J. Grubor, S. Lee, K. Langer. Wireless high-speed data transmission with phosphorescent white light LEDs. 33rd European Conference and Exhibition of Optical Communication (ECOC), 3-4(2007).

    [17] Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, J. Cheng. Emerging optical wireless communications-advances and challenges. IEEE J. Sel. Areas Commun., 33, 1738-1749(2015).

    [18] M. Strassburg, S. Mardani, J. K. Kim, A. Alexeev, M. R. Krames, J.-P. Linnartz. Modeling and compensating dynamic nonlinearities in LED photon-emission rates to enhance OWC. Light-Emitting Devices, Materials, and Applications, 30(2019).

    [19] S. Mardani, A. Khalid, F. M. Willems, J.-P. Linnartz. Effect of blue filter on the SNR and data rate for indoor visible light communication system. European Conference on Optical Communication (ECOC), 1-3(2017).

    [20] S. Mardani, J.-P. Linnartz. Capacity of the first-order low-pass channel with power constraint. Symposium on Information Theory and Signal Processing in the Benelux, 1-6(2020).

    [21] S. Mardani, X. Deng, J.-P. Linnartz. Efficiency of power loading strategies for visible light communication. IEEE Globecom Workshops, 1-6(2019).

    [22] D. Bykhovsky, S. Arnon. An experimental comparison of different bit-and-power-allocation algorithms for DCO-OFDM. J. Lightwave Technol., 32, 1559-1564(2014).

    [23] H. Elgala, R. Mesleh, H. Haas, B. Pricope. OFDM visible light wireless communication based on white LEDs. IEEE Vehicular Technology Conference, 2185-2189(2007).

    [24] J. Armstrong. OFDM for optical communications. J. Lightwave Technol., 27, 189-204(2009).

    [25] K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, G. T. Zhou. Nonlinear distortion mitigation in visible light communications. IEEE Wireless Commun., 22, 36-45(2015).

    [26] P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, W. Popoola. Visible light communications: 170  Mb/s using an artificial neural network equalizer in a low bandwidth white light configuration. J. Lightwave Technol., 32, 1807-1813(2014).

    [27] S. Dimitrov, H. Haas. Information rate of OFDM-based optical wireless communication systems with nonlinear distortion. J. Lightwave Technol., 31, 918-929(2013).

    [28] J. G. Smith. The information capacity of amplitude and variance constrained scalar Gaussian channels. Inf. Control, 18, 203-219(1971).

    [29] C. Chow, C. Yeh, Y. Liu, Y. Liu. Digital signal processing for light emitting diode based visible light communication. IEEE Photon. Soc. Newslett., 26, 9-13(2012).

    [30] E. F. Schubert. Light-Emitting Diodes(2006).

    [31] D. Kwon, S. Yang, S. Han. Modulation bandwidth enhancement of white-LED-based visible light communications using electrical equalizations. Proc. SPIE, 9387, 93870T(2015).

    [32] S. Mardanikorani, X. Deng, J.-P. M. G. Linnartz. Sub-carrier loading strategies for DCO-OFDM LED communication. IEEE Trans. Commun., 68, 1101-1117(2020).

    [33] H. Elgala, R. Mesleh, H. Haas. Predistortion in optical wireless transmission using OFDM. 9th International Conference on Hybrid Intelligent Systems (HIS), 184-189(2009).

    [34] I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, T. Sphicopoulos. Impact of nonlinear LED transfer function on discrete multitone modulation: analytical approach. J. Lightwave Technol., 27, 4970-4978(2009).

    [35] M. Schetzen. Nonlinear system modeling based on the Wiener theory. Proc. IEEE, 69, 1557-1573(1981).

    [36] H. Qian, S. Yao, S. Cai, T. Zhou. Adaptive postdistortion for nonlinear LEDs in visible light communications. IEEE Photon. J., 6, 7901508(2014).

    [37] G. Zhang, J. Zhang, X. Hong, S. He. Low-complexity frequency domain nonlinear compensation for OFDM based high-speed visible light communication systems with light emitting diodes. Opt. Express, 25, 3780-3794(2017).

    [38] T. Kamalakis, J. W. Walewski, G. Mileounis. Empirical Volterra-series modeling of commercial light-emitting diodes. J. Lightwave Technol., 29, 2146-2155(2011).

    [39] G. Stepniak, J. Siuzdak, P. Zwierko. Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE. IEEE Photon. Technol. Lett., 25, 1597-1600(2013).

    [40] Z. Peng, C. Cheng. Volterra series theory: a state-of-the-art review. Chin. Sci. Bull., 60, 1874-1888(2015).

    [41] J. Kim, K. Konstantinou. Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett., 37, 1417-1418(2001).

    [42] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, C. R. Giardina. A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun., 52, 159-165(2004).

    [43] W. Zhao, Q. Guo, J. Tong, J. Xi, Y. Yu, P. Niu, X. Sun. Orthogonal polynomial-based nonlinearity modeling and mitigation for LED communications. IEEE Photon. J., 8, 7905312(2016).

    [44] M. Kong, Y. Chen, R. Sarwar, B. Sun, Z. Xu, J. Han, J. Chen, H. Qin, J. Xu. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal. Opt. Express, 26, 3087-3097(2018).

    [45] Y. Huang, Z. Liu, X. Yi, Y. Guo, S. Wu, G. Yuan, J. Wang, G. Wang, J. Li. Overshoot effects of electron on efficiency droop in InGaN/GaN MQW light-emitting diodes. AIP Adv., 6, 045219(2016).

    [46] T. P. Lee. Effect of junction capacitance on the rise time of LED’s and on the turn-on delay of injection lasers. Bell Syst. Tech. J., 54, 53-68(1975).

    [47] R. S. Tucker, D. J. Pope. Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser. IEEE J. Quantum Electron., 19, 1179-1183(1983).

    [48] R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, J. E. Bowers. High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron., 28, 1990-2008(1992).

    [49] S. Weisser, I. Esquivias, P. J. Tasker, J. D. Ralston, B. Romero, J. Rosenzweig. Impedance characteristics of quantum-well lasers. IEEE Photon. Technol. Lett., 6, 1421-1423(1994).

    [50] I. Esquivias, S. Weisser, B. Romero, J. Ralston, J. Rosenzweig. Carrier dynamics and microwave characteristics of GaAs-based quantum-well lasers. IEEE J. Quantum Electron., 35, 635-646(1999).

    [51] A. David, C. A. Hurni, N. G. Young, M. D. Craven. Carrier dynamics and Coulomb-enhanced capture in III-nitride quantum heterostructures. Appl. Phys. Lett., 109, 033504(2016).

    [52] D. Sizov, R. Bhat, A. Zakharian, K. Song, D. Allen, C. Zah. Impact of carrier transport on aquamarine–green laser performance. Appl. Phys. Express, 3, 122101(2010).

    [53] S. Hammersley, M. J. Davies, P. Dawson, R. A. Oliver, M. J. Kappers, C. J. Humphreys. Carrier distributions in InGaN/GaN light-emitting diodes. Phys. Status Solidi B, 252, 890-894(2015).

    [54] S. Karpov. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Opt. Quantum Electron., 47, 1293-1303(2009).

    [55] R. Stevenson. The LED’s dark secret. IEEE Spectr., 46, 26-31(2009).

    [56] M. A. Hopkins, D. W. Allsopp, M. J. Kappers, R. A. Oliver, C. J. Humphreys. The ABC model of recombination reinterpreted: impact on understanding carrier transport and efficiency droop in InGaN/GaN light emitting diodes. J. Appl. Phys., 122, 234505(2017).

    [57] Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, M.-H. Kim, Y. Park. Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes. Appl. Phys. Lett., 97, 133507(2010).

    [58] P. Prajoon, D. Nirmal, M. A. Menokey, J. C. Pravin. Temperature-dependent efficiency droop analysis of InGaN MQW light-emitting diode with modified ABC model. J. Comput. Electron., 15, 1511-1520(2016).

    [59] J. M. Shah, Y. L. Li, T. Gessmann, E. F. Schubert. Experimental analysis and theoretical model for anomalously high ideality factors (n ≫ 2.0) in AlGaN/GaN p-n junction diodes. J. Appl. Phys., 94, 2627-2630(2003).

    [60] D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, D. D. Koleske. The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett., 94, 081113(2009).

    [61] I. E. Titkov, S. Y. Karpov, A. Yadav, V. L. Zerova, M. Zulonas, B. Galler, M. Strassburg, I. Pietzonka, H.-J. Lugauer, E. U. Rafailov. Temperature-dependent internal quantum efficiency of blue high-brightness light-emitting diodes. IEEE J. Quantum Electron., 50, 911-920(2014).

    [62] H. Y. Ryu, H. S. Kim, J. I. Shim. Rate equation analysis of efficiency droop in InGaN light-emitting diodes. Appl. Phys. Lett., 95, 081114(2009).

    [63] D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, F. Scholz. Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes. Phys. Status Solidi B, 250, 283-290(2013).

    [64] K. Arulandu, J.-P. M. G. Linnartz, X. Deng. Enhanced visible light communication modulator with dual feedback control. IEEE J. Emerging Sel. Top. Power Electron., 9, 123-137(2019).

    [65] X. Deng, K. Arulandu, Y. Wu, S. Mardanikorani, G. Zhou, J.-P. M. G. Linnartz. Modeling and analysis of transmitter performance in visible light communications. IEEE Trans. Veh. Technol., 68, 2316-2331(2019).

    [66] A. David, M. J. Grundmann. Droop in InGaN light-emitting diodes: a differential carrier lifetime analysis. Appl. Phys. Lett., 96, 103504(2010).

    [67] K. A. Bulashevich, O. V. Khokhlev, I. Y. Evstratov, S. Y. Karpov. Simulation of light-emitting diodes for new physics understanding and device design. Proc. SPIE, 8278, 827819(2012).

    [68] S. Mardanikorani, X. Deng, J.-P. M. G. Linnartz, A. Khalid. Compensating dynamic nonlinearities in LED photon emission to enhance optical wireless communication. IEEE Trans. Veh. Technol., 70, 1317-1331(2021).

    [69] H. Schneider, K. V. Klitzing. Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure. Phys. Rev. B, 38, 6160-6165(1988).

    [70] A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, W. Y. Jan. Quantum well carrier sweep out: relation to electroabsorption and exciton saturation. IEEE J. Quantum Electron., 27, 2281-2295(1991).

    [71] P. H. Binh, V. D. Trong, P. Renucci, X. Marie. Improving OOK modulation rate of visible LED by peaking and carrier sweep-out effects using n-Schottky diodes-capacitance circuit. J. Lightwave Technol., 31, 2578-2583(2013).

    [72] J. H. Park, J. W. Lee, D. Y. Kim, J. Cho, E. F. Schubert, J. Kim, J. Lee, Y.-I. Kim, Y. Park, J. K. Kim. Variation of the external quantum efficiency with temperature and current density in red, blue, and deep ultraviolet light-emitting diodes. J. Appl. Phys., 119, 023101(2016).

    [73] H. Fu, Y. Zhao. Efficiency droop in GaInN/GaN LEDs. Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications, 299-325(2017).

    Anton Alexeev, Jean-Paul M. G. Linnartz, Kumar Arulandu, Xiong Deng. Characterization of dynamic distortion in LED light output for optical wireless communications[J]. Photonics Research, 2021, 9(6): 916
    Download Citation