• Advanced Photonics
  • Vol. 5, Issue 6, 066004 (2023)
Bingying Zhao1、* and Jerome Mertz2
Author Affiliations
  • 1Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
  • 2Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
  • show less
    DOI: 10.1117/1.AP.5.6.066004 Cite this Article Set citation alerts
    Bingying Zhao, Jerome Mertz. Resolution enhancement with deblurring by pixel reassignment[J]. Advanced Photonics, 2023, 5(6): 066004 Copy Citation Text show less
    References

    [1] J. Mertz. Introduction to Optical Microscopy(2019).

    [2] J. Wichmann, S. W. Hell. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [3] T. A. Klar et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. U. S. A., 97, 8206-8210(2000).

    [4] S. W. Hell. Toward fluorescence nanoscopy. Nat. Biotechnol., 21, 1347-1355(2003).

    [5] K. I. Willig et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440, 935-939(2006).

    [6] E. Rittweger et al. STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics, 3, 144-147(2009).

    [7] M. G. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [8] R. Heintzmann, T. M. Jovin, C. Cremer. Saturated patterned excitation microscopy: a concept for optical resolution improvement. J. Opt. Soc. Am. A, 19, 1599-1609(2002).

    [9] M. G. L. Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U. S. A., 102, 13081-13086(2005).

    [10] P. Kner et al. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods, 6, 339-342(2009).

    [11] M. G. Gustafsson et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 94, 4957-4970(2008).

    [12] L. Schermelleh et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320, 1332-1336(2008).

    [13] D. Li et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349, aab3500(2015).

    [14] C. B. Müller, J. Enderlein. Image scanning microscopy. Phys. Rev. Lett., 104, 198101(2010).

    [15] S. Roth et al. Optical photon reassignment microscopy (OPRA). Opt. Nanosc., 2, 5(2013).

    [16] G. M. De Luca et al. Re-scan confocal microscopy: scanning twice for better resolution. Biomed. Opt. Express, 4, 2644-2656(2013).

    [17] C. J. Sheppard, S. B. Mehta, R. Heintzmann. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett., 38, 2889-2892(2013).

    [18] E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [19] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-796(2006).

    [20] T. Dertinger et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. U. S. A., 106, 22287-22292(2009).

    [21] S. Cox et al. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat. Methods, 9, 195-200(2011).

    [22] E. A. Mukamel, H. Babcock, X. Zhuang. Statistical deconvolution for superresolution fluorescence microscopy. Biophys. J., 102, 2391-2400(2012).

    [23] K. Agarwal, R. Machá. Multiple signal classification algorithm for superresolution fluorescence microscopy. Nat. Commun., 7, 13752(2016).

    [24] T. Mangeat et al. Super-resolved live-cell imaging using random illumination microscopy. Cell Rep. Methods, 1, 100009(2021).

    [25] F. Chen, P. W. Tillberg, E. S. Boyden. Expansion microscopy. Science, 347, 543-548(2015).

    [26] I. Cho, J. Y. Seo, J. Chang. Expansion microscopy. J. Microsc., 271, 123-128(2018).

    [27] S. A. Jones et al. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods, 8, 499-505(2011).

    [28] S. van de Linde, M. Heilemann, M. Sauer. Live-cell super-resolution imaging with synthetic fluorophores. Annu. Rev. Phys. Chem., 63, 519-540(2012).

    [29] H. Takakura et al. Long time-lapse nanoscopy with spontaneously blinking membrane probes. Nat. Biotechnol., 35, 773-780(2017).

    [30] N. Gustafsson et al. Fast live-cell conventional fluorophore nanoscopy with imageJ through super-resolution radial fluctuations. Nat. Commun., 7, 12471(2016).

    [31] R. F. Laine et al. High-fidelity 3D live-cell nanoscopy through data-driven enhanced super-resolution radial fluctuation(2022).

    [32] E. Torres-García et al. Extending resolution within a single imaging frame. Nat. Commun., 13, 7452(2022).

    [33] S. Hugelier et al. Sparse deconvolution of high-density superresolution images. Sci. Rep., 6, 21413(2016).

    [34] X. Huang et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 36, 451-459(2018).

    [35] W. Zhao et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat. Biotechnol., 40, 606-617(2022).

    [36] N. Wiener. Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications(1949).

    [37] W. H. Richardson. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am., 62, 55-59(1972).

    [38] L. B. Lucy. An iterative technique for the rectification of observed distributions. Astron. J., 79, 745(1974).

    [39] M. Aubry et al. Fast local Laplacian filters: theory and applications. ACM Trans. Graphics, 33, 167(2014).

    [40] C. Bond et al. Technological advances in superresolution microscopy to study cellular processes. Mol. Cell, 82, 315-332(2022).

    [41] R. D’Antuono. Airyscan and confocal line pattern(2022).

    [42] D. Sage et al. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nat. Methods, 16, 387-395(2019).

    [43] S. Culley et al. Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat. Methods, 15, 263-266(2018).

    [44] T. Azuma, T. Kei. Super-resolution spinning-disk confocal microscopy using optical photon reassignment. Opt. Express, 23, 15003-15011(2015).

    [45] N. T. Feric et al. Engineered cardiac tissues generated in the biowire II: a platform for human-based drug discovery. Toxicol. Sci., 172, 89-97(2019).

    [46] W. J. de Lange et al. Human IPSC-engineered cardiac tissue platform faithfully models important cardiac physiology. Am. J. Physiol. Heart Circ. Physiol., 320, H1670-H1686(2021).

    [47] Z. Wang et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [48] A. Badon et al. Video-rate large-scale imaging with multi-z confocal microscopy. Optica, 6, 389-395(2019).

    [49] T. D. Weber et al. High-speed multiplane confocal microscopy for voltage imaging in densely labeled neuronal populations. Nat. Neurosci., 26, 1642-1650(2023).

    [50] B. Zhao, M. Koyama, J. Mertz. High-resolution multi-z confocal microscopy with a diffractive optical element. Biomed. Opt. Express, 14, 3057-3071(2023).

    [51] H. Ma et al. Fast and precise algorithm based on maximum radial symmetry for single molecule localization. Opt. Lett., 37, 2481-2483(2012).

    [52] A. V. Kashchuk et al. Particle localization using local gradients and its application to nanometer stabilization of a microscope. ACS Nano, 17, 1344-1354(2023).

    [53] I. J. Schoenberg. Cardinal Spline Interpolation(1973).

    [54] N. Kanopoulos, N. Vasanthavada, R. L. Baker. Design of an image edge detection filter using the Sobel operator. IEEE J. Solid-State Circuits, 23, 358-367(1988).

    [55] J. Pawley. Handbook of Biological Confocal Microscopy(2006).

    [56] C. N. Toepfer et al. Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy. Circulation, 141, 828-842(2020).

    [57] X. Lian et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc., 8, 162-175(2013).

    [58] J. Javor et al. Controlled strain of cardiac microtissue via magnetic actuation, 452-455(2020).

    Bingying Zhao, Jerome Mertz. Resolution enhancement with deblurring by pixel reassignment[J]. Advanced Photonics, 2023, 5(6): 066004
    Download Citation