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Abstract. Improving the spatial resolution of a fluorescence microscope has been an ongoing challenge in
the imaging community. To address this challenge, a variety of approaches have been taken, ranging from
instrumentation development to image postprocessing. An example of the latter is deconvolution, where
images are numerically deblurred based on a knowledge of the microscope point spread function.
However, deconvolution can easily lead to noise-amplification artifacts. Deblurring by postprocessing can
also lead to negativities or fail to conserve local linearity between sample and image. We describe here
a simple image deblurring algorithm based on pixel reassignment that inherently avoids such artifacts and
can be applied to general microscope modalities and fluorophore types. Our algorithm helps distinguish
nearby fluorophores, even when these are separated by distances smaller than the conventional resolution
limit, helping facilitate, for example, the application of single-molecule localization microscopy in dense
samples. We demonstrate the versatility and performance of our algorithm under a variety of imaging
conditions.
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1 Introduction
The spatial resolution of conventional fluorescence microscopy
is limited to about half the emission wavelength because of dif-
fraction.1 This limit can be surpassed using a variety of super-
resolution approaches. For example, techniques such as STED,2–6

SIM,7–13 or ISM14–17 generally require some form of scanning,
either of a single excitation focus or of excitation patterns.
Alternatively, scanning-free superresolution can be achieved
by exploiting the blinking nature of certain fluorophores, as
popularized initially by PALM18 and STORM.19 In this latter
approach, individual molecules are localized one by one based
on the premise, typically, that the most likely location of the
molecules is at the centroid of their respective emission point
spread function (PSF). A distinct advantage of single-molecule
localization microscopy (SMLM) is that it can be implemented
with a conventional camera-based fluorescence microscope,
meaning that its barrier to entry is low and it can fully benefit

from the most recent advances in camera technology (high
quantum efficiency, low noise, massive pixel numbers, etc.).
However, a key requirement of SMLM is that the imaged
molecules are sparsely distributed, as ensured, for example,
by photoactivation. This sparsity requirement implies, in turn,
that several raw images, each sparse, are required to synthesize
a final, less sparse, superresolved image. Efforts have been made
to partially alleviate this sparsity constraint in SMLM, such as
SOFI,20 3B analysis,21 DeconSTORM,22 and MUSICAL.23

Additional approaches not requiring molecular blinking have
involved sparsifying the illumination, for example, with speckle
illumination24 or sparsifying the sample itself by tissue expan-
sion ExM.25,26 However, in all cases (excluding ExM) the
requirement remains that several images, often thousands, are
needed to produce an acceptable final image. As such, live-
cell imaging is precluded, and sparsity-based superresolution
approaches have been almost always limited to imaging fixed
samples (though see Refs. 27–29).

In recent years, it has been noted that the sparsity constraint
can be partially alleviated by pre-sharpening the raw images.*Address all correspondence to Bingying Zhao, byzhao@bu.edu
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Example algorithms are SRRF30,31 and MSSR,32 which are freely
available and easy to use. In contrast to DeconSTORM, these
algorithms make only minimal assumptions about the emission
PSF (radiality in the case of SRRF; convexity in the case of
MSSR), and their application can substantially reduce the num-
ber of raw images required for SMLM. Indeed, when applied to
denser images, only few images or even a single raw image can
produce results quite comparable to much more time-consuming
superresolution approaches. However, these algorithms are not
without drawbacks. SRRF andMSSR are both inherently highly
nonlinear, meaning that additional steps are required to enforce
a linear relation between sample and image brightness.30–32

Moreover, when applied to samples that are too dense, such
as samples that exhibit features locally extended in 2D, those
features tend to be hollowed out and only their edges or spines
are preserved, meaning that SRRF and MSSR are most appli-
cable to samples containing only point- or line-like features
smaller than the PSF, but provide poor fidelity otherwise.

We present an alternative image-sharpening approach that is
similar to SRRF and MSSR, but has the advantage of inherently
preserving image intensities and being more generally appli-
cable. Like SRRF and MSSR, our approach can be applied
to a wide variety of fluorescence microscopes, where we make
only minimal assumptions about the emission PSF, namely, that
the PSF centroid is located at its peak. Also, like SRRF and
MSSR, our approach can be applied to a sequence of raw im-
ages, allowing a temporal analysis of blinking or fluctuation sta-
tistics, or it can be applied to only a few or even a single image.
Our approach is based on postprocessing by pixel reassignment,
producing a deblurring effect similar to deconvolution but with-
out the drawbacks associated with conventional deconvolution
algorithms. We describe the basic principle of deblurring by
pixel reassignment (DPR) and compare its performance to
SRRF and MSSR both experimentally and with simulated data.
Our DPR algorithm is made available as a MATLAB function.

2 Principle of DPR
Fundamental to any linear imaging technique is the concept of a
PSF: point sources in a sample produce light distributions at the
imaging plane that are blurred by a convolution operation with
the PSF. Because the width of the PSF is finite, so too is the
image resolution. In principle, if the PSF is known exactly,
the blurring caused by convolution can be undone numerically
by deconvolution; however, in practice, such deblurring is ham-
pered by fundamental limitations. For one, the Fourier transform
of the PSF (or optical transfer function—OTF) provides a spatial
frequency support inherently limited by the finite size of the
microscope pupil, meaning that spatial frequencies beyond this
diffraction limit are identically zero and cannot be recovered
by deconvolution, even in principle (unless aided by assump-
tions,33–35 such as sample analyticity, continuity, and sparsity).
Another limitation, no less fundamental, is the problem of noise.
In conventional fluorescence microscopy, the OTF tapers to very
small values as it approaches the diffraction limit and falls below
the shot-noise level generally well below this limit. As such, any
attempt to amplify the high-frequency content of the OTF by
deconvolution only ends up amplifying noise. This problem
is particularly egregious with Wiener deconvolution,36 where
noise amplification easily leads to unacceptable image mottling
and also with Richardson–Lucy (RL) deconvolution37,38 when
implemented with too many iterations. Regularization is re-
quired to dampen such noise-induced artifacts, often to the point

that when applied to conventional fluorescence microscopy,
deconvolution only marginally improves resolution if at all
(note that deconvolution fares better with nonconventional
microscopies, such as SIM or ISM, where the OTF tapering near
the diffraction limit is less severe).

The purpose of DPR is to perform PSF sharpening similar to
deconvolution, but in a manner less prone to noise-induced ar-
tifacts and without the requirement of a full model for the PSF.
Unlike Wiener deconvolution, which is performed in Fourier
space using a division operation, DPR operates entirely in real
space with no division operation that can egregiously amplify
noise. Unlike RL deconvolution, DPR is noniterative and can
be performed in a single pass, without the need for an arbitrary
iteration-termination criterion. DPR relies solely on pixel
reassignment. As such, no negativities are possible in the final
image reconstruction, as is often encountered, for example, with
Wiener deconvolution or image sharpening with a Laplacian
filter.39 Moreover, intensity levels are rigorously conserved, with
no requirement of additional procedures to ensure local linearity,
as needed, for example, with SRRF, MSSR, or even SOFI.40

The basic principle of DPR is schematically shown in Fig. 1
and described in more detail in Sec. 5. In brief, raw fluorescence
images are first preconditioned by (1) performing global back-
ground subtraction, (2) normalizing to the overall maximum
value in the image, and (3) re-mapping by interpolation to a
coordinate system of grid period given by roughly one-eighth
of the full width at half-maximum (FWHM) of the PSF. The
purpose of such preconditioning is to standardize the raw im-
ages prior to the application of DPR. The actual sharpening
of the image is then performed by pixel reassignment, where
intensities (pixel values) at each grid location (pixel) are reas-
signed to neighboring locations according to the direction and
magnitude of the locally normalized image gradient (or, equiv-
alently, the log-image gradient), scaled by a gain parameter.
Because pixels are generally reassigned to off-grid locations,
their pixel values are distributed to the nearest on-grid reas-
signed locations as weighted by their proximity (see Fig. S1 in
the Supplementary Material). Finally, an assurance is included
that pixels can be displaced no farther than 1.25 times the PSF
FWHM width.

As a simple example, consider imaging a point source with a
Gaussian PSF of root-mean-square (RMS) width σ. The gradient
of the log-PSF is then linear. That is, the pixels are reassigned
toward the PSF center exactly in proportion to their distance from
the center, where the proportionality factor is selected by a gain
parameter. The resultant sharpening of the PSF is substantial. For
DPR gains 1 and 2, we find that the PSF widths are reduced by
factors 4 and 7, respectively (see Fig. S2 in the Supplementary
Material).

Conventionally, the resolution of a microscope is defined by
its capacity to distinguish two point sources. More specifically,
it is defined by the minimum separation distance required for
two points to be resolved based on a predefined criterion, such
as the Sparrow or Rayleigh criterion. We again consider the
example of a Gaussian PSF, but now with two point sources.
According to the Sparrow and Rayleigh criteria, the two points
would have to be separated by 2.2σ and 2.8σ to be resolvable,
respectively. With the application of DPR, we find that this
separation distance can be reduced. A clear dip between the
two points by a factor of 0.74 is observed at a separation dis-
tance of 1.66σ for DPR gain 1, and an even smaller separation
of 1.43σ for DPR gain 2. Indeed, we find that the two points
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remain resolvable down to separation distances of 1.36σ and
1.20σ for gains 1 and 2, respectively (Sparrow criterion), cor-
responding to resolution enhancements of 0.62 and 0.55 relative
to the Sparrow limit, or, equivalently, 0.59 and 0.51 relative to
the Rayleigh limit [see Fig. S3(b) in the Supplementary
Material]. It should be noted, however, that this enhanced capac-
ity to resolve two nearby points is not entirely error-free. For
example, when DPR is applied to points separated by less than
about 1.9σ, the points begin to appear somewhat closer to each
other than they actually are, with a relative error that increases
with gain [see Fig. S3(c) in the Supplementary Material]. That
is, the choice of using DPR gain 1 or 2 (or other gain param-
eters) should be made at the user’s discretion, bearing in mind
this trade-off between resolution capacity and accuracy.

Similar resolution enhancement results are obtained when
DPR is applied to two line objects. Here, we use raw data ac-
quired by an Airyscan microscope obtained from Refs. 32 and
41 [Fig. 2(b)]. In the raw image, lines separated by 150 nm can-
not be resolved, whereas after the application of DPR with gains
1 and 2, they can be resolved at separations of 90 and 30 nm,
respectively. The intensity profiles across the full set of line
pairs for raw, DPR gain 1, and DPR gain 2 images are shown
in Fig. S4(a) in the Supplementary Material. DPR images of the
same sample acquired by conventional confocal microscopy32,41

are shown in Fig. S4(b) in the Supplementary Material. In this
case, lines separated by 210 nm cannot be resolved in the raw
data set, whereas after application of DPR with gains 1 and 2,
they can be resolved at separations of 120 and 90 nm, respec-
tively.

To gain an appreciation of the effect of noise on DPR,
we again simulated images of two point objects and two line
objects, this time separated by 160 nm and imaged with a
Gaussian PSF of RMS 84.93 nm. To these images we added
shot noise (Poissonian) and additive camera readout noise
(Gaussian) of different strengths, leading to SNR values of
5.0, 7.7, 14.1, and 20.3 (see Fig. S5 in the Supplementary

Material). DPR gain 1 was applied to a stack of images, each
with a different noise realization. The resulting resolution-
enhanced images were then averaged over different numbers
of frames (10, 20, and 40). Manifestly, the final image quality
improves with increasing SNR and/or increasing numbers of
frames averaged, as expected. Accordingly, the error in the mea-
sured separation between the two point objects and the two line
objects as inferred by the separation between their peaks in the
images also decreases [see Fig. S5(c) in the Supplementary
Material]. The images of line objects were less sensitive to
noise, as evidenced by the relatively stable separation errors
across various SNRs, but they exhibited somewhat higher sep-
aration error compared to the images of the two point objects.
These results are qualitative only. Nevertheless, they provide a
rough indication of the increase in enhancement fidelity with
SNR.

3 Results

3.1 DPR Applied to Single-Molecule Localization
Imaging

To demonstrate the resolution enhancement capacity of DPR
with experimental data, we applied it to SMLM images. We
used raw images made publicly available through the SMLM
Challenge 2016,42 as these provide a convenient standardization
benchmark. The experimental data consisted of a 4000-frame
sequence of STORM images of microtubules labeled with
Alexa567.

We applied DPR separately to each frame. Similar to SRRF
and MSSR, we included in our DPR algorithm the possibility of
temporal analysis of DPR-enhanced images. Here, the temporal
analysis is simple and consists either of averaging in time
the DPR-enhanced images or calculating their variance in time
(as is done, for example, with SOFI imaging of order 2). The
results are shown in Figs. 3(a) and 3(b). As expected, DPR

(a)

(b)

Fig. 1 Principle of DPR. (a) From left to right: simulations of Gaussian PSF intensity and gradient
maps (amplitude and direction), pixel reassignments, deblurred PSF image after application of
DPR. (b) DPR workflow.
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gain 2 leads to greater resolution enhancement than gain 1.
Moreover, as expected, the temporal variance analysis leads
to enhanced image contrast, since it preferentially preserves
fluctuating signals while removing nonfluctuating backgrounds.
However, it should be noted that temporal variance analysis
no longer preserves a linearity between sample and image
strengths, as opposed to temporal averaging.

Interestingly, when a temporal average was applied to the raw
images prior to the application of DPR [i.e., when the order of
DPR and averaging was reversed—Figs. 3(c) and 3(d)], DPR
continued to provide resolution enhancement, but not as effec-
tively as when DPR was applied separately to each raw frame.
The reason for this is clear. DPR relies on the presence of
spatial structure in the image, which is largely washed out by

averaging. In other words, similar to SRRF and MSSR, DPR
is most effective when imaging sparse samples, as indeed is
a requirement for SMLM.

3.2 DPR Maintains Imaging Fidelity

DPR reassigns pixels according to their gradients. If the gra-
dients are zero, the pixels remain in their initial position.
That is, when imaging structures larger than the PSF that present
gradients only around their edges but not within their interior,
DPR sharpens only the edges while leaving the structure
interiors unchanged. This differs, for example, from SRRF or
MSSR, which erode or hollow out the interiors erroneously.
DPR can thus be applied to more general imaging scenarios

(a)

(b)

(c)

Fig. 2 DPR resolution enhancement. (a) Simulation of DPR applied to two point objects separated
by 1.68σ and 1.41σ. Left, images before (RAW) and after application of DPR gain 1 (DPR1) and
DPR gain 2 (DPR2). Right, intensity plots across imaged points. Scale bar, 2σ. (b) DPR applied to
fluorescent lines of increasing separation from 0 to 390 nm. Scale bar, 800 nm. PSF FWHM,
4 pixels. Local-minimum filter radius, 7 pixels.
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where samples contain both small and large structures. This is
apparent, for example, when imaging a Siemens star target, as
shown in Fig. S6 in the Supplementary Material, where neither
SRRF nor MSSR accurately represents the widening of the star
spokes. For example, when we applied NanoJ-SQUIRREL43

to the DPR-enhanced, MSSR-enhanced, and SRRF-enhanced
Siemens star target images, we found resolution-scaled errors43

(RSEs) given by 53.5, 95.4, and 102.6, respectively; and reso-
lution-scaled Pearson coefficients43 (RSPs) given by 0.92, 0.54,
and 0.75, respectively. This improved fidelity is apparent, also,
in other imaging scenarios. In Fig. 4, we show results obtained
from the image of Alexa488-labeled bovine pulmonary artery
endothelial (BPAE) cells (ThermoFisher, FluoCells) acquired
with a conventional laser scanning confocal microscope
(Olympus FLUOVIEW FV3000; objective, 40× air, 0.9 NA;
confocal pinhole set to 0.23× Airy units; PSF FWHM, 256.4 nm;

pixel size, 73.3 nm). While the intensity profiles along a single
F-actin filament (red segments in Fig. 4) are sharpened roughly
equally between SRRF, MSSR, and DPR, the differences begin
to appear for intensity profiles spanning nearby F-actin fila-
ments (yellow segments in Fig. 4) or the imaging of larger struc-
tures (e.g., the cluster in the blue box Fig. 4).

A difficulty when evaluating image fidelity is the need for a
ground truth as a reference. To serve as a surrogate ground truth,
we obtained images of BPAE cells with a state-of-the-art Nikon
CS-WU1 spinning disk microscope equipped with a superreso-
lution module (SoRa) based on optical pixel reassignment44

(objective, 60× oil, 1.42 NA; PSF FWHM, 162.5 nm—
conventional configuration, 114.9 nm—SoRa configuration;
pixel size, 108.3 nm—conventional configuration, 27.1 nm—
SoRa configuration), to which we additionally applied 20 iter-
ations of RL deconvolution using the software supplied by the

(a) (b)

(c) (d)

Fig. 3 SMLM Challenge 2016. (a) DPR applied to each frame in raw image stack, followed by
temporal mean or variance. (i) Raw image stack, (ii) mean of raw images,, (iii) DPR gain 1 followed
by mean, (iv) DPR gain 2 followed by mean, (v) DPR gain 1 followed by variance, and (vi) DPR
gain 2 followed by variance. Scale bar, 650 nm. (b) Expanded regions of interest (ROIs) indicated
by green square in (a). Bottom left, intensity distribution along red line in ROIs. Bottom right,
intensity distribution along green line in ROIs. Scale bar, 200 nm. (c) Image mean followed by
DPR. (vii) gain 1, (viii) gain 2. Scale bar, 500 nm. (d) Expanded ROIs indicated by yellow squares
in (c) and (ii), (iii), and (iv) in (a). Right, intensity distribution along cyan line in ROIs. Scale bar,
150 nm. PSF FWHM, 2.7 pixels. Local-minimum filter radius, 5 pixels.
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manufacturer. The same BPAE cells were also imaged at
conventional (2× lower) resolution without the presence of
the SoRa module. We then applied DPR, SRRF, and MSSR
to the conventional resolution image for comparison (Fig. 5).
As shown in the zoomed-in regions in Fig. 5(b), conventional
confocal microscopy is not able to resolve two closely separated
filaments, even after the application of RL deconvolution. In
contrast, DPR is easily able to resolve the filaments at both gains
1 and 2, providing images similar to the SoRa superresolution
ground-truth images. SRRF and MSSR also sharpened the fil-
aments, but in the case of SRRF, the filaments remained difficult
to resolve, while in both cases there was significant intensity
dropout where the filaments disappeared altogether. When
we applied NanoJ-SQUIRREL to compare the image fidelities
of DPR, SRRF, and MSSR, we found the RSEs to be 11.35 for
DPR gain 1, 11.12 for DPR gain 2, 19.36 for SRRF, and 18.88
for MSSR. Figure S7 in the Supplementary Material shows the
RSE maps for DPR, SRRF, and MSSR. The RSPs were found to
be 0.83 for DPR gain 1, 0.84 for DPR gain 2, 0.41 for SRRF,
and 0.44 for MSSR. For these examples, DPR provides sharp-
ened images with higher fidelity.

3.3 DPR Applied to Engineered Cardiac Tissue Imaging

To demonstrate the ability of DPR to enhance image informa-
tion, we performed structural imaging of engineered cardiac
micro-bundles derived from human-induced pluripotent stem
cells (hiPSCs), which have recently gained interest as model
systems to study human cardiomyocytes (CMs).45,46 We first im-
aged a monolayer of green fluorescent protein (GFP)-labeled
hiPSC-CMs with a confocal microscope of sufficient resolution
to reveal the z-discs of sarcomeres. This image serves as a
ground-truth reference. We then simulated a series of 45 con-
ventional wide-field images by numerically convolving the
ground-truth image with a low-resolution wide-field PSF and
adding simulated detection noise (shot noise and additive cam-
era noise). DPR was applied to the conventional images, leading
to the deblurred image shown in Fig. 6(a). Manifestly, this de-
blurred image much more closely resembles the ground-truth
image, as confirmed by the structural similarity index
(SSIM);47 the SSIM between the conventional and ground-truth
images was 0.4, whereas, between the DPR and ground truth
images, it was enhanced to 0.6. This increased fidelity is further

(b)

(a)

(d)

(c)

Fig. 4 Comparison of DPR, MSSR, and SRRF performances. (a) Images of BPAE cells acquired
by a confocal microscope and after DPR gain 2, first order MSSR, and SRRF. DPR parameters:
PSF FWHM, 4 pixels; local-minimum filter radius, 12 pixels; DPR gain, 2. MSSR: PSF FWHM,
4 pixels; magnification, 2; order, 1. SRRF: ring radius, 0.5, magnification, 2;, axes, 6. Scale
bar, 5 μm. (b) Intensity profiles along single F-actin indicated by red lines in (c). (c) Intensity profiles
along proximal F-actin filaments by yellow lines in (a). (d) Expanded ROIs indicated by cyan
square in (a). Scale bar, 1.5 μm.
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validated by the pixel-wise error maps shown in Fig. 6(a), and
by the line profiles through a sarcomere (cyan rectangle) show-
ing that the application of DPR leads to better resolution of the
z-discs, with the number and location of the z-discs being con-
sistent with the ground-truth image.

We also performed imaging of hiPSC cardiomyocyte tissue
organoids (hiPSC-CMTs). Such imaging is more challenging
because of the increased thickness of the organoids (about
400 μm), which led to increased background and scattering-in-
duced blurring, and also because of their irregular shapes, which
led to aberrations. Again, we performed confocal imaging, this
time at both low and high resolutions [Figs. 6(b) and 6(c)], with
lateral resolutions measured to be 1.5 and 0.5 μm, respectively,
based on the FWHM of subdiffraction-sized fluorescent beads.
As expected, low-resolution imaging failed to clearly resolve
the z-discs (the separation between z-discs is in the range of
1.8 to 2.0 μm, depending on sarcomere maturity). However,
when DPR was applied to the low-resolution image, the z-discs
became resolvable [Fig. 6(b)]. DPR was further applied to the

high-resolution image, resulting in an even greater enhancement
of resolution [Fig. 6(c)].

3.4 DPR Applied to Volumetric Zebrafish Imaging

In recent years, there has been a push to develop microscopes
capable of imaging populations of cells within extended
volumes at high spatiotemporal resolution. One such micro-
scope is based on confocal imaging with multiple axially distrib-
uted pinholes, enabling simultaneous multiplane imaging.48,49

However, in its most simple implementation, multi-z confocal
microscopy is based on low NA illumination and provides only
limited spatial resolution, roughly 2.6 μm lateral and 15 μm
axial. While such resolution is adequate for distinguishing
neuronal somata in animals, such as mice and zebrafish, it is
inadequate for distinguishing, for example, nearby dendritic
processes. To demonstrate the applicability of DPR to different
types of microscopes, we applied it here to zebrafish images
acquired with a multi-z confocal microscope essentially identical

Ground truth

Confocal

RL deconvolution DPR gain1 DPR gain 2

SRRF MSSR

(a)

Ground truth

Confocal

RL deconvolution DPR gain1 DPR gain 2 SRRF MSSR

(b)

2 μm 2 μm

600 nm

600 nm

Fig. 5 Comparison of DPR, SRRF, and MSSR with optical pixel reassignment and deconvolution.
(a) Left, BPAE cells imaged using optical pixel reassignment and deconvolution with Nikon con-
focal microscope without (top) and with SoRa superresolution enhanced by RL deconvolution
(20 iterations). Right, confocal images deblurred by RL deconvolution (20 iterations), DPR (gains
1 and 2), SRRF, and MSSR. DPR parameters: PSF FWHM, 2 pixels; local-minimum filter radius,
40 pixels. MSSR parameters: PSF FWHM, 2 pixels; magnification, 4; order, 1. SRRF: ring radius,
0.5; magnification, 4; axes, 6. Scale bar, 2 μm. (b) Zoom-in ROIs indicated by red squares in (a).
Scale bar, 600 nm.
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to that described in Ref. 48 (objective, 16× water, 0.8 NA; pixel
size, 0.5 μm). We imaged neuronal process in the head and
tail regions of a transgenic zebrafish larva expressing GFP at
nine days postfertilization (dpf). Both regions were imaged
with four planes separated by 20 μm, within a volume of

256 μm × 256 μm × 60 μm. Without DPR, the axons in the
brain region [Fig. 7(a)] are difficult to resolve, as expected, since
this region is densely labeled; whereas in the tail region
[Fig. 7(b)] where axons are more sparsely distributed and there
is less background, the axons are resolvable but blurred. When
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Fig. 6 Engineered cardiac tissue imaging. (a) DPR gain 1 applied to simulated ground-truth wide-
field images of monolayer hiPSC-CMs derived from experimental images acquired by a confocal
microscope. Left, simulated ground truth. Middle, simulated wide-field intensity image without (top)
and with (bottom) application of DPR, and corresponding error maps. Right, intensity profile along
sarcomere chain indicated by the cyan rectangle. PSF FWHM, 4 pixels; local-minimum filter
radius, 7 pixels. (b) DPR gain 1 applied to experimental low-resolution images of hiPSC-
CMTs. Left, confocal image. Middle, DPR-enhanced image. Right, intensity profile of sarcomere
chain indicated by the red rectangle. PSF FWHM, 4 pixels; local-minimum filter radius,
7 pixels. (c) DPR gain 1 applied to experimental high-resolution images of hiPSC-CMT. Left, con-
focal image. Middle, DPR-enhanced image. Right, intensity profile of the sarcomere chain indicated
by the yellow rectangle. PSF FWHM, 2 pixels; local-minimum filter radius, 4 pixels. Scale bar, 15 μm.
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DPR is applied, the axons in both the brain and tail regions
become deblurred and clearly resolvable, enabling a cleaner
separation between image planes [Figs. 7(a) and 7(d)]. We note
that these results are more qualitative than quantitative, since

no ground truth was available for reference. Nevertheless,
we did compare our DPR results with raw images obtained by
a different multi-z system equipped with a diffractive optical
element in the excitation path to enable higher-resolution
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Fig. 7 Multi-z confocal zebrafish imaging. (a) In vivo raw and DPR-enhanced (gain 1) multiplane
images of the brain region in a zebrafish 9 dpf. Left, four image planes. Right, merged with colors
corresponding to depth. ROIs indicated by the red and yellow rectangles in (a) are shown in
Fig. S8 in the Supplementary Material. Scale bar, 25 μm. (b) Raw and DPR-enhanced multiplane
images of the zebrafish tail region. Scale bar, 25 μm. (c) ROI indicated by the cyan rectangle in (b),
and intensity profile along the cyan dashed line. ROI indicated by the magenta rectangle in
(b) is shown in Fig. S8 in the Supplementary Material. Scale bar, 10 μm. (d) Merged multiplane
images in the tail region of a zebrafish. Left, raw low-resolution multiplane image. Middle,
DPR-enhanced low-resolution multiplane image. Right, raw high-resolution multiplane image
(different fish and tail regions). PSF FWHM, 5 pixels; local-minimum filter radius, 25 pixels.
Scale bar, 20 μm. Planes 1 to 4, the deepest to the shallowest. Interplane separation, 20 μm.
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imaging (0.50 μm lateral and 3.6 μm axial).50 A comparison is
shown in Fig. 7(d) (different fish, different tail regions—see also
Fig. S9 in the Supplementary Material), illustrating the qualita-
tive similarity between low-resolution multi-z images enhanced
with DPR and directly acquired higher-resolution images.

4 Discussion
The purpose of DPR is to help counteract the blurring induced
by the PSF of a fluorescence microscope. The underlying
assumption of DPR is that fluorescent sources are located by
their associated PSF centroids, which are found by hill climbing
directed by local intensity gradients.51,52 When applied to indi-
vidual fluorescence images, DPR helps distinguish nearby
sources, even when these are separated by distances smaller than
the Sparrow or Rayleigh limit. In other words, DPR can provide
resolution enhancement even in densely labeled samples. Such
resolution enhancement is akin to image sharpening, with the
advantage that DPR is performed in real space rather than
Fourier space, and that local intensities are inherently preserved
and negativities are impossible (Table S1 in the Supplementary
Material).

To define what is meant by the term local here, we can
directly compare the intensities of raw and DPR-enhanced
images. When both images are spatially filtered by average
blurring, the differences between their intensities become in-
creasingly small with increasing kernel size of the average filter
(see Fig. S10 in the Supplementary Material). Indeed, the rel-
ative differences, as characterized by the difference standard
deviations, drop to <7.7% when the kernel size is smaller than
about 4.5 times the PSF FWHM (corresponding to about 36
subpixels). In other words, on scales larger than 4.5 PSF widths,
the raw and DPR images are essentially identical. It is only on
scales smaller than 4.5 PSF widths that deviations between the
two images begin to appear owing to the image sharpening in-
duced by DPR. The image sharpening, which is inherently local,
thus preserves intensities on this scale. If, in addition, the sample
can be regarded as sparse, either by assumption or because of
fluorophore intensity fluctuation statistics (imposed or passive),
the enhanced capacity of DPR to distinguish fluorophores can
help reduce the number of images required for SMLM-type
superresolution.

Of course, no deblurring strategy is immune to noise, and the
same is true for DPR. However, DPR presents the advantage that
noise cannot be amplified as it can be, for example, with Wiener
or RL deconvolution, both of which require some form of noise
regularization (in the case of RL, iteration termination is equiv-
alent to regularization). DPR requires neither regularization nor
even an exact model of the PSF. As such, DPR resembles SRRF
and MSSR, but with the advantage of simpler implementation
and more general applicability to samples possessing extended
features.

Finally, our DPR algorithm is made available here as a
MATLAB function compatible with either Windows or MacOS.
An example time to process a stack of 128 × 128 × 100 images
obtained with a microscope whose PSF FWHM is 2 pixels
(upscaled to 533 × 533 × 100) when run on an Intel i7-9800X
computer equipped with an NVIDIA GeForce GTX 970 GPU is
2.32 s. A similar run time is found when using a MacBook Pro
with Apple M1 Pro (2.08 s with MATLAB).

Because of its ease of use, speed, and versatility, we believe
DPR can be of general utility to the bio-imaging community.

5 Methods

5.1 DPR Algorithm

Figure S9 in the Supplementary Material illustrates the overall
workflow of DPR, and Algorithm S1 in the Supplementary
Material provides more details in the form of a pseudo-code.
To begin, we subtract the global minimum from each raw image
to remove uniform background and camera offset (if any). These
background-subtracted images Iin serve as the inputs to our
algorithm.

Next, we must establish a vector map to guide the pixel
reassignment process. This is done in steps. First, we perform
local equalization of Iin by applying a local-minimum filter
and subtracting it from Iin, obtaining Ieq. The radius of the
local-minimum filter is user-defined. Typically, we use a radius
10× the Airy disk (default), though this can be made bigger to
preserve larger sample structures. Next, both Iin and Ieq are
mapped onto a grid of period equal to 8× the estimated
FWHM of the PSF. This mapping is performed by spline inter-
polation.53 The images are zero-padded to prevent errors due to
out-of-image pixel reassignments, where the zero padding is
removed at the end of DPR. We also divide Ieq by a lowpass-
filtered version of itself, so as to locally normalize Ieq. It is from
this locally normalized Ieq that the pixel-reassignment vector
map is derived.

The reassignment vector map for DPR is obtained by first
calculating the gradients of Ieq along the x and y directions
using conventional 3 × 3 Sobel gradient filters.54 The resulting
gradient vectors for each pixel are then normalized to the pixel
values themselves (equivalent to a log-image gradient) and
multiplied by a scalar gain. The comparison of using image gra-
dients and log-image gradients for pixel reassignment is illus-
trated in Fig. S11 in the Supplementary Material. The gain is
user-defined. For our results, we used gains of 1 or 2. Note that
the length of the reassignment vector is limited in part by a small
offset applied to the equalized image that ensures the normal-
ized image gradients remain finite. In addition, a hard limit of
10 pixels (1.25 times the PSF FWHM) is imposed; reassignment
vectors of lengths longer than 10 pixels are ignored, and the
pixels are left unchanged.

Pixel reassignment consists of numerically displacing the in-
tensity values in the input image from their initial grid position
to new reassigned positions according to their associated pixel
reassignment vector. In general, as shown in Fig. S1 in the
Supplementary Material, the new reassigned positions are
off-grid. The pixel values are then partitioned to the nearest four
on-grid locations as weighted by their proximity to these loca-
tions, as described in more detail in Algorithm S1 in the
Supplementary Material.

Reassignment is performed pixel-by-pixel across the entire
input image, leading to a final output DPR image. In the event
that a time sequence of the image is processed, the output
DPR sequence can be temporally analyzed (for example, by
calculating the temporal average or variance) if desired. Note
that an input parameter for our DPR algorithm is the estimated
PSF size. When using the Olympus FV3000 microscope,
we obtained this from the manufacturer’s software. When
using our home-built confocal microscopes, we measured this
with 200 nm fluorescent beads (Phosphorex). When using the
SoRa microscope, we used the estimated PSF for confocal
microscopy. The PSF size need not be exact and may be
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estimated from the conventional Rayleigh resolution limit
given as55

δ ¼ 0.61λem
NAobj

; (1)

where λem is the emission wavelength and NAobj is the NA of
the objective.

5.2 Simulated Data

Simulated wide-field images of two point objects and two line
objects separated by 160 nm were used to evaluate the separa-
tion accuracy of DPR using Gaussian PSF of standard deviation
84.93 nm. The images were rendered on a 40 nm grid. Poisson
noise and Gaussian noise were added to simulate different
SNRs, with SNR being calculated as

SNR ¼ I0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0 þ readoutnoise2

p : (2)

A temporal stack of 45 image frames with independent noises
was generated for each SNR.

Simulated wide-field images of the sarcomere ground truth
were produced based on a Gaussian PSF model of standard
deviation 0.85 μm. Poisson noise and Gaussian noise were
added to the images. A temporal stack of 45 image frames of
images was then generated.

5.3 Engineered Heart Tissue Preparation

hiPSCs from the PGP1 parent line (derived from PGP1 donor
from the Personal Genome Project) with an endogenous GFP
tag on the sarcomere gene TTN56 were maintained in mTeSR1
(StemCell) on Matrigel (Fisher) mixed 1:100 in DMEM/F-12
(Fisher) and split using accutase (Fisher) at 60% to 90%
confluence. hiPSCs were differentiated into monolayer hiPSC-
CMs by the Wnt signaling pathway.57 Once cells were beating,
hiPSC-CMs were purified using RPMI no-glucose media
(Fisher) with 4 mmol/L sodium DL lactate solution (Sigma)
for 2 to 5 days. Following selection, the cells were replated and
maintained in RPMI with 1:50 B-27 supplement (Fisher) on
10 μg∕mL fibronectin (Fisher)-coated plates until day 30.

Three-dimensional (3D) hiPSC-CMTs devices with tissue
wells, each containing two cylindrical micropillars with spheri-
cal caps, were cast in PDMS from a 3D-printed mold
(Protolabs).58 A total of 60,000 cells per CMT, 90% hiPSC-
CMs, and 10% normal human ventricular cardiac fibroblasts
were mixed in 7.5 μL of an ECM solution, 4 mg/mL human
fibrinogen (Sigma), 10%Matrigel (Corning), 1.6 mg/mL throm-
bin (Sigma), 5 μmol∕L Y-27632 (Tocris), and 33 μg∕mL apro-
tinin (Sigma). The cell–ECM mixture was pipetted into each
well, and after polymerization for 5 min, growth media contain-
ing high-glucose DMEM (Fisher) supplemented with 10% fetal
bovine serum (Sigma), 1% penicillin–streptomycin (Fisher),
1% nonessential amino acids (Fisher), 1% GlutaMAX (Fisher),
5 μmol∕L Y-27632, and 33 μg∕mL aprotinin was added and
replaced every other day. Y-27632 was removed 2 days after
seeding, and aprotinin was decreased to 16 μg∕mL after 7 days.
Next, CMTs were fixed in 4% PFA (Fisher) for 30 min, washed
3 times with PBS, and stored in PBS at 4°C.

5.4 Zebrafish Preparation

All procedures were approved by the Institutional Animal Care
and Use Committee (IACUC) at Boston University, and prac-
tices were consistent with the Guide for the Care and Use of
Laboratory Animals and the Animal Welfare Act. For the in vivo
structural imaging of zebrafish, transgenic zebrafish embryos
(isl2b:Gal4 UAS:Dendra) expressing GFP were maintained in
filtered water from an aquarium at 28.5°C on a 14 to 10 h
light–dark cycle. Zebrafish larvae at 9 days postfertilization
(dpf) were used for imaging. The larvae were embedded in
5% low-melting-point agarose (Sigma) in a 55 mm petri dish.
After agarose solidification, the petri dish was filled with filtered
water from the aquarium.

5.5 hiPSC-CMTs Imaging

The hiPSC-CMTs were imaged with a custom confocal micro-
scope, essentially identical to that described in Ref. 48, but with
adjustable illumination NA (0.2 NA with 300 μm confocal
pinhole for low-resolution imaging and 0.8 NA with 150 μm
confocal pinhole for high-resolution imaging) and single-plane
detection. The measured PSF FWHMs were 1.5 μm for low-
resolution imaging and 0.5 μm for high-resolution using the
16× objective (Nikon CFI LWD Plan Fluorite Water 16×,
0.8 NA). Pixel sizes were 0.3 μm.

5.6 DPR, MSSR, and SRRF Parameters

The parameters used for DPR, MSSR, and SRRF for our results
can be found in Table S2 in the Supplementary Material.

5.7 Error Map Calculation

Error map calculation is realized by a custom script written in
MATLAB R2021b. Pixelated differences between the images
and the ground truth are directly measured by subtraction and
saved as an error map.

5.8 SSIM Calculation

The SSIM calculation is realized by the SSIM function in
MATLABR2021b. Exponents for luminance, contrast, and struc-
tural terms are set as [1, 1, 1] (default values). Standard deviation
of the isotropic Gaussian function is set as 1.5 (default value).

Code, Data, and Materials Availability
Data underlying the results presented in this paper are not pub-
licly available at this time but may be obtained from the authors
upon reasonable request. The DPR MATLAB package is avail-
able on Github (https://github.com/biomicroscopy/DPR-Project).
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