• Photonics Research
  • Vol. 7, Issue 4, 486 (2019)
Ye Zheng1, Lianzhong Deng1, Jianping Li1, Tianqing Jia1, Jianrong Qiu2, Zhenrong Sun1, and Shian Zhang1、3、*
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
  • 2State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1364/PRJ.7.000486 Cite this Article Set citation alerts
    Ye Zheng, Lianzhong Deng, Jianping Li, Tianqing Jia, Jianrong Qiu, Zhenrong Sun, Shian Zhang. Controlling multiphoton excited energy transfer from Tm3+ to Yb3+ ions by a phase-shaped femtosecond laser field[J]. Photonics Research, 2019, 7(4): 486 Copy Citation Text show less
    References

    [1] T. Miyakawa, D. L. Dexter. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Phys. Rev. B, 1, 2961-2969(1970).

    [2] A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, E. B. da Costa. White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass. Appl. Phys. Lett., 91, 091114(2007).

    [3] D. Chen, Y. Wang, K. Zheng, T. Guo, Y. Yu, P. Huang. Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals. Appl. Phys. Lett., 91, 251903(2007).

    [4] Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, S. Buddhudu. 980  nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth–lead glasses. Appl. Phys. Lett., 87, 171911(2005).

    [5] G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, S. Lu. Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation. Opt. Commun., 242, 215-219(2004).

    [6] G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, Y. Cui. Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets. J. Lumin., 122, 128-130(2007).

    [7] S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, J. Qiu. Enhanced cooperative quantum cutting in Tm3+–Yb3+ codoped glass ceramics containing LaF3 nanocrystals. Opt. Express, 16, 8989-8994(2008).

    [8] Q. Y. Zhang, G. F. Yang, Z. H. Jiang. Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+(RE = Pr, Tb, and Tm). Appl. Phys. Lett., 91, 051903(2007).

    [9] L. Xie, Y. Wang, H. Zhang. Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer. Appl. Phys. Lett., 94, 061905(2009).

    [10] J. Li, J. Zhang, X. Zhang, Z. Hao, Y. Luo. Cooperative downconversion and near infrared luminescence of Tm3+/Yb3+ codoped calcium scandate phosphor. J. Alloys Compd., 583, 96-99(2014).

    [11] X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, J. Qiu. Cooperative downconversion in Yb3+–RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses. Opt. Lett., 33, 2858-2860(2008).

    [12] R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, J. Yu. Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications. Infrared Phys. Technol., 94, 1-6(2018).

    [13] N. K. Giri, A. K. Singh, D. K. Rai, S. B. Rai. Role of Yb3+ and Tm3+ ions in upconversion emission of Tb3+ under 798 and 980  nm laser excitations in Tb3+–Tm3+–Yb3+ doped tellurite glass. Opt. Commun., 281, 3547-3552(2008).

    [14] F. Wang, X. Liu. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc., 130, 5642-5643(2008).

    [15] X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, L. Fan. Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects. J. Phys. Chem. C, 111, 13611-13617(2007).

    [16] Y. Sheng, L. D. Liao, A. Bandla, Y.-H. Liu, N. Thakor, M. C. Tan. Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earth-doped nanoparticles for infrared photoacoustic imaging. ACS Biomater. Sci. Eng., 2, 809-817(2016).

    [17] Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, H. Zhang. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals. Nanotechnology, 18, 275609(2007).

    [18] J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, R. Withnall. The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors. J. Phys. Chem. B, 105, 948-953(2001).

    [19] Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, N. Hashemi. The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures. J. Mater. Chem. C, 2, 1736-1741(2014).

    [20] G. S. Yi, G. M. Chow. Water-soluble NaYF4:Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater., 19, 341-343(2007).

    [21] X. Xue, M. Thitsa, T. Cheng, W. Gao, D. Deng, T. Suzuki, Y. Ohishi. Laser power density dependent energy transfer between Tm3+ and Tb3+: tunable upconversion emissions in NaYF4:Tm3+, Tb3+, Yb3+ microcrystals. Opt. Express, 24, 26307-26321(2016).

    [22] C. F. Gainer, G. S. Joshua, M. Romanowski. Toward the use of two-color emission control in upconverting NaYF4:Er3+, Yb3+ nanoparticles for biomedical imaging. Proc. SPIE, 8231, 82310I(2012).

    [23] C. F. Gainer, G. S. Joshua, C. R. De Silva, M. Romanowski. Control of green and red upconversion in NaYF4:Yb3+, Er3+ nanoparticles by excitation modulation. J. Mater. Chem., 21, 18530-18533(2011).

    [24] M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B, 61, 3337-3346(2000).

    [25] R. M. El-Agmy, N. M. Al-Hosiny, S. Abdallah, M. S. Abdel-Aal. Generation of short wavelength in up-conversion of Tm3+ doped fluoride glass and its application in fiber lasers. J. Mod. Phys., 5, 123-127(2014).

    [26] F. Auzel. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev., 104, 139-174(2004).

    [27] D. Meshulach, Y. Silberberg. Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses. Phys. Rev. A, 60, 1287-1292(1999).

    [28] A. Gandman, L. Chuntonov, L. Rybak, Z. Amitay. Coherent phase control of resonance-mediated (2+1) three-photon absorption. Phys. Rev. A, 75, 031401(2007).

    [29] S. Xu, Y. Huang, Y. Yao, T. Jia, J. Ding, S. Zhang, Z. Sun. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process. J. Phys. B, 48, 135402(2015).

    [30] M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb. Adaptive subwavelength control of nano-optical fields. Nature, 446, 301-304(2007).

    [31] J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, M. Motzkus. Quantum control of energy flow in light harvesting. Nature, 417, 533-535(2002).

    [32] C. Brif, R. Chakrabarti, H. Rabitz. Control of quantum phenomena: past, present and future. New J. Phys., 12, 075008(2010).

    [33] N. Dudovich, B. Dayan, S. M. G. Faeder, Y. Silberberg. Transform-limited pulses are not optimal for resonant multiphoton transitions. Phys. Rev. Lett., 86, 47-50(2001).

    Ye Zheng, Lianzhong Deng, Jianping Li, Tianqing Jia, Jianrong Qiu, Zhenrong Sun, Shian Zhang. Controlling multiphoton excited energy transfer from Tm3+ to Yb3+ ions by a phase-shaped femtosecond laser field[J]. Photonics Research, 2019, 7(4): 486
    Download Citation