• Journal of Semiconductors
  • Vol. 42, Issue 1, 013105 (2021)
Fuyou Liao1、2, Feichi Zhou2, and Yang Chai1、2
Author Affiliations
  • 1The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
  • 2Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
  • show less
    DOI: 10.1088/1674-4926/42/1/013105 Cite this Article
    Fuyou Liao, Feichi Zhou, Yang Chai. Neuromorphic vision sensors: Principle, progress and perspectives[J]. Journal of Semiconductors, 2021, 42(1): 013105 Copy Citation Text show less
    References

    [1] A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys, 5, 115(1943).

    [2]

    [3]

    [4] et alImplementing neural architectures using analog VLSI circuits. IEEE Trans Circuits Syst, 36, 643(1989).

    [5] Neuromorphic electronic systems. Proc IEEE, 78, 1629(1990).

    [6] A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 117, 500(1952).

    [7] et alA million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345, 668(2014).

    [8] The future of electronics based on memristive systems. Nat Electron, 1, 22(2018).

    [9] et al2D layered materials for memristive and neuromorphic applications. Adv Electron Mater, 6, 1901107(2019).

    [10] et alStochastic phase-change neurons. Nat Nanotechnol, 11, 693(2016).

    [11] et alNanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett, 12, 2179(2012).

    [12] et alA synaptic transistor based on quasi-2D molybdenum oxide. Adv Mater, 29, 1700906(2017).

    [13] et alAnisotropic black phosphorus synaptic device for neuromorphic applications. Adv Mater, 28, 4991(2016).

    [14] et alShort-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater, 10, 591(2011).

    [15] et alRetinomorphic event-based vision sensors: bioinspired cameras with spiking output. Proc IEEE, 102, 1470(2014).

    [16] et alNeuromorphic stereo vision: A survey of bio-inspired sensors and algorithms. Front Neurorobot, 13, 28(2019).

    [17] et alOptoelectronic resistive random access memory for neuromorphic vision sensors. Nat Nanotechnol, 14, 776(2019).

    [18] et alUltrafast machine vision with 2D material neural network image sensors. Nature, 579, 62(2020).

    [19] et alGate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci Adv, 6, eaba6173(2020).

    [20] et alArtificial optic-neural synapse for colored and color-mixed pattern recognition. Nat Commun, 9, 1(2018).

    [21]

    [22] et alHuman eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat Commun, 8, 1(2017).

    [23] et alA biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 581, 278(2020).

    [24] Charge coupled semiconductor devices. Bell Syst Tech J, 49, 587(1970).

    [25]

    [26]

    [27] et alReview of CMOS image sensors. Microelectron J, 37, 433(2006).

    [28] et alA bioinspired flexible organic artificial afferent nerve. Science, 360, 998(2018).

    [29] et alBioinspired artificial eyes: Optic components, digital cameras, and visual prostheses. Adv Funct Mater, 28, 1705202(2017).

    [30] et alDigital cameras with designs inspired by the arthropod eye. Nature, 497, 95(2013).

    [31] Biologically inspired artificial compound eyes. Science, 312, 557(2006).

    [32] et alA hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 454, 748(2008).

    [33] Bio-inspired vision. J Instru, 7, C01054(2012).

    [34] Eye smarter than scientists believed: Neural computations in circuits of the retina. Neuron, 65, 150(2010).

    [35] The fundamental plan of the retina. Nat Neurosci, 4, 877(2001).

    [36]

    [37] A review of bioinspired vision sensors and their applications. Sens Mater, 27, 447(2015).

    [38] Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci, 15, 250(2014).

    [39] et alSynaptic metaplasticity realized in oxide memristive devices. Adv Mater, 28, 377(2016).

    [40] et alMixed-halide perovskite for ultrasensitive two-terminal artificial synaptic devices. Mater Chem Front, 3, 941(2019).

    [41] Neuromorphic vision sensors. Sens Actuators A, 56, 19(1996).

    [42] Neuromorphic vision sensors. Science, 288, 1189(2000).

    [43]

    [44]

    [45] A 128 × 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE J Solid-State Circuits, 43, 566(2008).

    [46] A 3.6 μs latency asynchronous frame-free event-driven dynamic-vision-sensor. IEEE J Solid-State Circuits, 46, 1443(2011).

    [47] A QVGA 143 dB dynamic range frame-free pwm image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J Solid-State Circuits, 46, 259(2011).

    [48]

    [49]

    [50] et alA 240 × 180 130 dB 3 μs latency global shutter spatiotemporal vision sensor. IEEE J Solid-State Circuits, 49, 2333(2014).

    [51] A 64 × 64 AER logarithmic temporal derivative silicon retina. Research in Microelectronics and Electronics, 2005 PhD, 2, 202(2005).

    [52] et alLow-voltage, optoelectronic CH3NH3PbI3–xClx memory with integrated sensing and logic operations. Adv Funct Mater, 28, 1800080(2018).

    [53] et alOptoelectronic memory using two-dimensional materials. Nano Lett, 15, 259(2015).

    [54] et alMonolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat Commu, 8, 14734(2017).

    [55] et alMultibit MoS2 photoelectronic memory with ultrahigh sensitivity. Adv Mater, 28, 9196(2016).

    [56] et alOptoelectrical molybdenum disulfide (MoS2)-ferroelectric memories. ACS Nano, 9, 8089(2015).

    [57] et alGraphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotechnol, 8, 826(2013).

    [58] et alTwo-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat Commun, 9, 2966(2018).

    [59] et alA light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Mater, 4, 035022(2017).

    [60]

    [61] et alMoS2 memristor with photoresistive switching. Sci Rep, 6, 31224(2016).

    [62] et alTwo-terminal multibit optical memory via van der Waals heterostructure. Adv Mater, 31, 1807075(2019).

    [63] et alPhosphorene/ZnO nano-heterojunctions for broadband photonic nonvolatile memory applications. Adv Mater, 30, 1801232(2018).

    [64] et al2D materials based optoelectronic memory: Convergence of electronic memory and optical sensor. Research, 2019, 9490413(2019).

    [65] In-sensor computing for machine vision. Nature, 579, 32(2020).

    [66] et alOrigami silicon optoelectronics for hemispherical electronic eye systems. Nat Commun, 8, 1782(2017).

    [67] The metabolic cost of neural information. Nat Neurosci, 1, 36(1998).

    Fuyou Liao, Feichi Zhou, Yang Chai. Neuromorphic vision sensors: Principle, progress and perspectives[J]. Journal of Semiconductors, 2021, 42(1): 013105
    Download Citation