• Acta Optica Sinica
  • Vol. 42, Issue 1, 0112001 (2022)
Binghua Cao1,*, Dedong Zheng1, Mengbao Fan2, Fengshan Sun2, and Lin Liu3
Author Affiliations
  • 1School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221000, China
  • 2School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221000, China
  • 3Beijing Institute of Aerospace Metrology and Measurement Technology, Beijing 100076, China
  • show less
    DOI: 10.3788/AOS202242.0112001 Cite this Article Set citation alerts
    Binghua Cao, Dedong Zheng, Mengbao Fan, Fengshan Sun, Lin Liu. Efficient and Reliable Thickness Measurement Method for Multilayer Coatings Based on Terahertz Time-Domain Spectroscopy Technology[J]. Acta Optica Sinica, 2022, 42(1): 0112001 Copy Citation Text show less
    References

    [1] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 296, 280-284(2002).

    [2] Cheng B, Ren J J, Gu J et al. High-precision thickness detection of coatings based on terahertz propagation simulation model[J]. Acta Optica Sinica, 40, 1312001(2020).

    [3] Dong Y, Lawman S, Zheng Y L et al. Nondestructive analysis of automotive paints with spectral domain optical coherence tomography[J]. Applied Optics, 55, 3695-3700(2016).

    [4] Bargraser C, Mohan P, Lee K et al. Life approximation of thermal barrier coatings via quantitative microstructural analysis[J]. Materials Science and Engineering: A, 549, 76-81(2012).

    [5] Yasui T, Yasuda T, Sawanaka K I et al. Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film[J]. Applied Optics, 44, 6849-6856(2005).

    [6] Yasuda T, Iwata T, Araki T et al. Improvement of minimum paint film thickness for THz paint meters by multiple-regression analysis[J]. Applied Optics, 46, 7518-7526(2007).

    [7] Zheng R H, Ellingwood B R. Role of non-destructive evaluation in time-dependent reliability analysis[J]. Structural Safety, 20, 325-339(1998).

    [8] Yong L, Chen Z M, Mao Y et al. Quantitative evaluation of thermal barrier coating based on eddy current technique[J]. NDT & E International, 50, 29-35(2012).

    [9] Zhou T Y, Li L J, Ren J J et al. Pulsed terahertz nondestructive testing of glass fiber reinforced plastics based on FDTD[J]. Acta Optica Sinica, 40, 1226002(2020).

    [10] Wang Z, Zhang Y W, Yu Y et al. Depthtest of pipeline defects by active thermal excitation and infrared thermography[J]. Acta Optica Sinica, 38, 0912003(2018).

    [11] Drinkwater B W, Wilcox P D. Ultrasonic arrays for non-destructive evaluation: a review[J]. NDT & E International, 39, 525-541(2006).

    [12] Abdel-Qader I, Yohali S, Abudayyeh O et al. Segmentation of thermal images for non-destructive evaluation of bridge decks[J]. NDT & E International, 41, 395-405(2008).

    [13] Liu D, Qiang P F, Li L S et al. Multilayernested X-ray focusing optical device[J]. Acta Optica Sinica, 36, 0834002(2016).

    [14] Jackson J B, Labaune J, Bailleul-Lesuer R et al. Terahertz pulse imaging in archaeology[J]. Frontiers of Optoelectronics, 8, 81-92(2015).

    [15] Xiong W H, Li L J, Ren J J et al. THz multi-feature parameter imaging of bonding defects of high temperature composite materials[J]. Acta Optica Sinica, 40, 1711001(2020).

    [16] White J, Fichter G, Chernovsky A et al. Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings[J]. AIP Conference Proceedings, 1096, 434-439(2009).

    [17] Kuzmenko A B, Merbold H. Stratified dispersive model for material characterization using terahertz time-domain spectroscopy[J]. Optics Letters, 39, 3853-3856(2014).

    [18] Nguyen D T, Weber K, Volker W et al. Non-destructive measurement of thickness and refractive index of multilayer coating on metal substrate[C]∥2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), September 25-30, 2016, Copenhagen, Denmark.(2016).

    [19] Krimi S, Torosyan G, René B G. Advanced GPU-based terahertz approach for in-line multilayer thickness measurements[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-12(2017).

    [20] Cao B H, Wang M Y, Li X H et al. Noncontact thickness measurement of multilayer coatings on metallic substrate using pulsed terahertz technology[J]. IEEE Sensors Journal, 20, 3162-3171(2020).

    [21] Rao R V, Savsani V J, Vakharia D P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems[J]. Computer-Aided Design, 43, 303-315(2011).

    [22] Chen D B, Lu R Q, Zou F et al. Teaching-learning-based optimization with variable-population scheme and its application for ANN and global optimization[J]. Neurocomputing, 173, 1096-1111(2016).

    [23] Shukla A K, Singh P, Vardhan M. An adaptive inertia weight teaching-learning-based optimization algorithm and its applications[J]. Applied Mathematical Modelling, 77, 309-326(2020).

    [24] Lecaruyer P, Maillart E, Canva M et al. Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance[J]. Applied Optics, 45, 8419-8423(2006).

    [25] Jagannathan A, Gatesman A J, Giles R H. Characterization of roughness parameters of metallic surfaces using terahertz reflection spectra[J]. Optics Letters, 34, 1927-1929(2009).

    [26] Tavazoei M S, Haeri M. Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms[J]. Applied Mathematics and Computation, 187, 1076-1085(2007).

    Binghua Cao, Dedong Zheng, Mengbao Fan, Fengshan Sun, Lin Liu. Efficient and Reliable Thickness Measurement Method for Multilayer Coatings Based on Terahertz Time-Domain Spectroscopy Technology[J]. Acta Optica Sinica, 2022, 42(1): 0112001
    Download Citation