• Photonics Research
  • Vol. 10, Issue 6, 1417 (2022)
Hao Yu1、2、†, Chenzhi Yuan1、†, Ruiming Zhang1, Zichang Zhang1, Hao Li3, You Wang1、4, Guangwei Deng1, Lixing You3, Haizhi Song1、4、8, Zhiming Wang1、5、9, Guang-Can Guo1、6, and Qiang Zhou1、6、7、*
Author Affiliations
  • 1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2Institut national de la recherche scientifique-Centre Énergie, Matériaux et Télécommunications (INRS-EMT), Varennes, Quebec J3X 1S2, Canada
  • 3Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 4Southwest Institute of Technical Physics, Chengdu 610041, China
  • 5Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • 6CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 7School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 8e-mail: hzsong1296@163.com
  • 9e-mail: zhmwang@gmail.com
  • show less
    DOI: 10.1364/PRJ.450731 Cite this Article Set citation alerts
    Hao Yu, Chenzhi Yuan, Ruiming Zhang, Zichang Zhang, Hao Li, You Wang, Guangwei Deng, Lixing You, Haizhi Song, Zhiming Wang, Guang-Can Guo, Qiang Zhou. Spectrally multiplexed indistinguishable single-photon generation at telecom-band[J]. Photonics Research, 2022, 10(6): 1417 Copy Citation Text show less
    References

    [1] C.-K. Hong, Z.-Y. Ou, L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett., 59, 2044-2046(1987).

    [2] Y.-H. Deng, H. Wang, X. Ding, Z.-C. Duan, J. Qin, M.-C. Chen, Y. He, Y.-M. He, J.-P. Li, Y.-H. Li, L.-C. Peng, E. S. Matekole, T. Byrnes, C. Schneider, M. Kamp, D.-W. Wang, J. P. Dowling, S. Höfling, C.-Y. Lu, M. O. Scully, J.-W. Pan. Quantum interference between light sources separated by 150 million kilometers. Phys. Rev. Lett., 123, 080401(2019).

    [3] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Opt., 74, 145-195(2002).

    [4] N. Gisin, R. Thew. Quantum communication. Nat. Photonics, 1, 165-171(2007).

    [5] J. L. O’brien. Optical quantum computing. Science, 318, 1567-1570(2007).

    [6] V. Giovannetti, S. Lloyd, L. Maccone. Quantum metrology. Phys. Rev. Lett., 96, 010401(2006).

    [7] I. Aharonovich, D. Englund, M. Toth. Solid-state single-photon emitters. Nat. Photonics, 10, 631-641(2016).

    [8] E. Meyer-Scott, C. Silberhorn, A. Migdall. Single-photon sources: approaching the ideal through multiplexing. Rev. Sci. Instrum., 91, 041101(2020).

    [9] A. Christ, C. Silberhorn. Limits on the deterministic creation of pure single-photon states using parametric down-conversion. Phys. Rev. A, 85, 023829(2012).

    [10] A. L. Migdall, D. Branning, S. Castelletto. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A, 66, 053805(2002).

    [11] T. Pittman, B. Jacobs, J. Franson. Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A, 66, 042303(2002).

    [12] X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, A. Zeilinger. Experimental generation of single photons via active multiplexing. Phys. Rev. A, 83, 043814(2011).

    [13] M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. Steel, A. S. Clark, B. Eggleton. Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun., 4, 2582(2013).

    [14] C. Xiong, T. D. Vo, M. Collins, J. Li, T. Krauss, M. Steel, A. Clark, B. Eggleton. Bidirectional multiplexing of heralded single photons from a silicon chip. Opt. Lett., 38, 5176-5179(2013).

    [15] T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. Steel, M. J. Withford, O. Alibart, S. Tanzilli. Hybrid photonic circuit for multiplexed heralded single photons. Laser Photonics Rev., 8, L42-L46(2014).

    [16] R. J. Francis-Jones, R. A. Hoggarth, P. J. Mosley. All-fiber multiplexed source of high-purity single photons. Optica, 3, 1270-1273(2016).

    [17] G. J. Mendoza, R. Santagati, J. Munns, E. Hemsley, M. Piekarek, E. Martn-López, G. D. Marshall, D. Bonneau, M. G. Thompson, J. L. O’Brien. Active temporal and spatial multiplexing of photons. Optica, 3, 127-132(2016).

    [18] F. Kaneda, B. G. Christensen, J. J. Wong, H. S. Park, K. T. McCusker, P. G. Kwiat. Time-multiplexed heralded single-photon source. Optica, 2, 1010-1013(2015).

    [19] C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. Helt, M. J. Steel, D.-Y. Choi, C. Chae, P. Leong, B. J. Eggleton. Active temporal multiplexing of indistinguishable heralded single photons. Nat. Commun., 7, 10853(2016).

    [20] F. Kaneda, P. G. Kwiat. High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv., 5, eaaw8586(2019).

    [21] M. G. Puigibert, G. Aguilar, Q. Zhou, F. Marsili, M. Shaw, V. Verma, S. Nam, D. Oblak, W. Tittel. Heralded single photons based on spectral multiplexing and feed-forward control. Phys. Rev. Lett., 119, 083601(2017).

    [22] C. Joshi, A. Farsi, S. Clemmen, S. Ramelow, A. L. Gaeta. Frequency multiplexing for quasi-deterministic heralded single-photon sources. Nat. Commun., 9, 847(2018).

    [23] T. Hiemstra, T. Parker, P. Humphreys, J. Tiedau, M. Beck, M. Karpiński, B. Smith, A. Eckstein, W. Kolthammer, I. Walmsley. Pure single photons from scalable frequency multiplexing. Phys. Rev. Appl., 14, 014052(2020).

    [24] S.-L. Liu, Q. Zhou, Z.-Y. Zhou, S.-K. Liu, Y. Li, Y.-H. Li, C. Yang, Z.-H. Xu, G.-C. Guo, B.-S. Shi. Multiplexing heralded single photons in orbital-angular-momentum space. Phys. Rev. A, 100, 013833(2019).

    [25] R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, W. Tittel. Quantum teleportation across a metropolitan fibre network. Nat. Photonics, 10, 676-680(2016).

    [26] Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, J.-W. Pan. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photonics, 10, 671-675(2016).

    [27] H. Liu, C. Jiang, H.-T. Zhu, M. Zou, Z.-W. Yu, X.-L. Hu, H. Xu, S. Ma, Z. Han, J.-P. Chen, Y. Dai, S.-B. Tang, W. Zhang, H. Li, L. You, Z. Wang, Y. Hua, H. Hu, H. Zhang, F. Zhou, Q. Zhang, X.-B. Wang, T.-Y. Chen, J.-W. Pan. Field test of twin-field quantum key distribution through sending-or-not-sending over 428 km. Phys. Rev. Lett., 126, 250502(2021).

    [28] J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, W.-J. Zhang, Z.-Y. Han, S.-Z. Ma, X.-L. Hu, Y.-H. Li, H. Liu, F. Zhou, H.-F. Jiang, T.-Y. Chen, H. Li, L.-X. You, Z. Wang, X.-B. Wang, Q. Zhang, J.-W. Pan. Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photonics, 15, 570-575(2021).

    [29] E. Saglamyurek, M. G. Puigibert, Q. Zhou, L. Giner, F. Marsili, V. B. Verma, S. W. Nam, L. Oesterling, D. Nippa, D. Oblak, W. Tittel. A multiplexed light-matter interface for fibre-based quantum networks. Nat. Commun., 7, 11202(2016).

    [30] Z. Zhang, C. Yuan, S. Shen, H. Yu, R. Zhang, H. Wang, H. Li, Y. Wang, G. Deng, Z. Wang, L. You, Z. Wang, H. Song, G.-C. Guo, Q. Zhou. High-performance quantum entanglement generation via cascaded second-order nonlinear processes. npj Quantum Inf., 7, 1(2021).

    [31] K. Wei, W. Li, H. Tan, Y. Li, H. Min, W.-J. Zhang, H. Li, L. You, Z. Wang, X. Jiang, T.-Y. Chen, S.-K. Liao, C.-Z. Peng, F. Xu, J.-W. Pan. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X, 10, 031030(2020).

    [32] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).

    [33] J. Lin, F. Bo, Y. Cheng, J. Xu. Advances in on-chip photonic devices based on lithium niobate on insulator. Photon. Res., 8, 1910-1936(2020).

    [34] S. Saravi, T. Pertsch, F. Setzpfandt. Lithium niobate on insulator: an emerging platform for integrated quantum photonics. Adv. Opt. Mater., 9, 2100789(2021).

    [35] D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, M. Lončar. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242-352(2021).

    [36] S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. Richardson, R. P. Leavitt, M. Lončar, E. Waks. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett., 113, 221102(2018).

    [37] J. Zhang, G. Muliuk, J. Juvert, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, G. Roelkens. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photonics, 4, 110803(2019).

    [38] Z. Ma, J.-Y. Chen, Z. Li, C. Tang, Y. M. Sua, H. Fan, Y.-P. Huang. Ultrabright quantum photon sources on chip. Phys. Rev. Lett., 125, 263602(2020).

    [39] J. Zhao, C. Ma, M. Rüsing, S. Mookherjea. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [40] G.-T. Xue, Y.-F. Niu, X. Liu, J.-C. Duan, W. Chen, Y. Pan, K. Jia, X. Wang, H.-Y. Liu, Y. Zhang, P. Xu, G. Zhao, X. Cai, Y.-X. Gong, X. Hu, Z. Xie, S. Zhu. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys. Rev. Appl., 15, 064059(2021).

    [41] S. Arahira, N. Namekata, T. Kishimoto, S. Inoue. Experimental studies in generation of high-purity photon-pairs using cascaded χ(2) processes in a periodically poled LiNbO3 ridge-waveguide device. J. Opt. Soc. Am. B, 29, 434-442(2012).

    [42] B. S. Elkus, K. Abdelsalam, S. Fathpour, P. Kumar, G. S. Kanter. Quantum-correlated photon-pair generation via cascaded nonlinearity in an ultra-compact lithium-niobate nano-waveguide. Opt. Express, 28, 39963-39975(2020).

    [43] M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, C. Koos. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 5, 876-883(2018).

    [44] N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, C. Koos. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express, 20, 17667-17677(2012).

    [45] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [46] H. Okayama, M. Kawahara. Waveguide array grating wavelength demultiplexer on LiNbO3. Integrated Photonics Research, ISaB3(1995).

    [47] W. Ji, Z. Gong, R. Yin, J. Li, J. Li, L. Lv, Q. Huang. Tunable arrayed waveguide grating optical filter based on lithium niobate-on-insulator and electro-optic effect. Opt. Eng., 57, 077102(2018).

    [48] M. Prost, G. Liu, S. B. Yoo. A compact thin-film lithium niobate platform with arrayed waveguide gratings and MMIS. Optical Fiber Communications Conference and Exposition (OFC), 1-3(2018).

    [49] H. Li, X. Cai. Flat-top CWDM using narrow straight directional couplers on LN thin film. Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), 1-3(2020).

    [50] J.-X. Zhou, R.-H. Gao, J.-T. Lin, M. Wang, W. Chu, W.-B. Li, D.-F. Yin, L. Deng, Z.-W. Fang, J.-H. Zhang, R.-B. Wu, Y. Cheng. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett., 37, 084201(2020).

    [51] E. Lomonte, M. A. Wolff, F. Beutel, S. Ferrari, C. Schuck, W. H. Pernice, F. Lenzini. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun., 12, 6847(2021).

    [52] A. A. Sayem, R. Cheng, S. Wang, H. X. Tang. Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors. Appl. Phys. Lett., 116, 151102(2020).

    [53] A. Aimone, F. Frey, R. Elschner, I. G. Lopez, G. Fiol, P. Rito, M. Gruner, A. Ulusoy, D. Kissinger, J. Fischer, C. Schubert, M. Schell. DAC-less 32-GBd PDM-256-QAM using low-power InP IQ segmented MZM. IEEE Photonics Technol. Lett., 29, 221-223(2016).

    [54] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [55] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, M. Lončar. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [56] Y. Hu, M. Yu, D. Zhu, N. Sinclair, A. Shams-Ansari, L. Shao, J. Holzgrafe, E. Puma, M. Zhang, M. Lončar. On-chip electro-optic frequency shifters and beam splitters. Nature, 599, 587-593(2021).

    [57] R. H. Brown, R. Q. Twiss. Correlation between photons in two coherent beams of light. Nature, 177, 27-29(1956).

    [58] R. Kumar, J. R. Ong, M. Savanier, S. Mookherjea. Controlling the spectrum of photons generated on a silicon nanophotonic chip. Nat. Commun., 5, 5489(2014).

    [59] R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, M. Sasaki. Widely tunable single photon source with high purity at telecom wavelength. Opt. Express, 21, 10659-10666(2013).

    [60] R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, K. Edamatsu. High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field. Phys. Rev. A, 83, 031805(2011).

    [61] X. Li, L. Yang, L. Cui, Z. Y. Ou, D. Yu. Observation of quantum interference between a single-photon state and a thermal state generated in optical fibers. Opt. Express, 16, 12505-12510(2008).

    [62] A. I. Lvovsky, M. G. Raymer. Continuous-variable optical quantum-state tomography. Rev. Mod. Opt., 81, 299-332(2009).

    [63] T. Pittman, B. Jacobs, J. Franson. Experimental demonstration of a quantum circuit using linear optics gates. Phys. Rev. A, 71, 032307(2005).

    [64] H. Fearn, R. Loudon. Theory of two-photon interference. J. Opt. Soc. Am. B, 6, 917-927(1989).

    [65] J. Rarity, P. Tapster, R. Loudon. Non-classical interference between independent sources. J. Opt. B, 7, S171-S175(2005).

    [66] T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, Y. Arakawa. Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities. Appl. Phys. Lett., 109, 132106(2016).

    [67] Ł. Dusanowski, M. Syperek, J. Misiewicz, A. Somers, S. Hoefling, M. Kamp, J. Reithmaier, G. Sek. Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80 K. Appl. Phys. Lett., 108, 163108(2016).

    [68] L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, V. Zwiller. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett., 112, 093106(2018).

    [69] H. Wang, Y.-M. He, T.-H. Chung, H. Hu, Y. Yu, S. Chen, X. Ding, M.-C. Chen, J. Qin, X. Yang, R.-Z. Liu, Z.-C. Duan, J.-P. Li, S. Gerhardt, K. Winkler, J. Jurkat, L.-J. Wang, N. Gregersen, Y.-H. Huo, Q. Dai, S. Yu, S. Höfling, C.-Y. Lu, J.-W. Pan. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics, 13, 770-775(2019).

    [70] S. K. Joshi, D. Aktas, S. Wengerowsky, M. Lončarić, S. P. Neumann, B. Liu, T. Scheidl, G. C. Lorenzo, Ž. Samec, L. Kling, A. Qiu, M. Razavi, M. Stipčević, J. G. Rarity, R. Ursin. A trusted node–free eight-user metropolitan quantum communication network. Sci. Adv., 6, eaba0959(2020).

    [71] H. Zou, H. Wang. Pulse-forming-line based on-chip short pulse generator. Rev. Sci. Instrum., 86, 044706(2015).

    [72] Z. Fu, H. Liu. Ultra-narrow pulse generator with precision-adjustable pulse width. Rev. Sci. Instrum., 89, 055103(2018).

    [73] Z. Ou. Quantum theory of fourth-order interference. Phys. Rev. A, 37, 1607-1619(1988).

    [74] F. Sun, C. Wong. Indistinguishability of independent single photons. Phys. Rev. A, 79, 013824(2009).

    [75] M. Avenhaus, H. B. Coldenstrodt-Ronge, K. Laiho, W. Mauerer, I. A. Walmsley, C. Silberhorn. Photon number statistics of multimode parametric down-conversion. Phys. Rev. Lett., 101, 053601(2008).

    Hao Yu, Chenzhi Yuan, Ruiming Zhang, Zichang Zhang, Hao Li, You Wang, Guangwei Deng, Lixing You, Haizhi Song, Zhiming Wang, Guang-Can Guo, Qiang Zhou. Spectrally multiplexed indistinguishable single-photon generation at telecom-band[J]. Photonics Research, 2022, 10(6): 1417
    Download Citation