• Photonics Research
  • Vol. 9, Issue 5, 722 (2021)
Jiaxin Gu1, Jie Liu1, Ziqi Bai1, Han Wang1, Xinyu Cheng1, Guanyu Li1, Menghua Zhang1, Xinxin Li1, Qi Shi1, Min Xiao1、2, and Xiaoshun Jiang1、*
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, College of Engineering and Applied Science and School of Physics, Nanjing University, Nanjing 210093, China
  • 2Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
  • show less
    DOI: 10.1364/PRJ.412840 Cite this Article Set citation alerts
    Jiaxin Gu, Jie Liu, Ziqi Bai, Han Wang, Xinyu Cheng, Guanyu Li, Menghua Zhang, Xinxin Li, Qi Shi, Min Xiao, Xiaoshun Jiang. Dry-etched ultrahigh-Q silica microdisk resonators on a silicon chip[J]. Photonics Research, 2021, 9(5): 722 Copy Citation Text show less
    References

    [1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, 8083(2018).

    [3] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [4] D. Armani, T. Kippenberg, S. Spillane, K. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [5] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, K. J. Vahala. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics, 6, 369-373(2012).

    [6] J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, A. Morand. High-Q silica microcavities on a chip: from microtoroid to microsphere. Appl. Phys. Lett., 99, 181123(2011).

    [7] L. Wu, H. Wang, Q. Yang, Q. Ji, B. Shen, C. Bao, M. Gao, K. Vahala. Greater than one billion Q factor for on-chip microresonators. Opt. Lett., 45, 5129-5131(2020).

    [8] Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, M. Qi. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 3, 1171-1180(2016).

    [9] D. T. Spencer, J. F. Bauters, M. J. Heck, J. E. Bowers. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica, 1, 153-157(2014).

    [10] X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [11] M. H. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, T. J. Kippenberg. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica, 5, 884-892(2018).

    [12] M. H. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, T. J. Kippenberg. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica, 3, 20-25(2016).

    [13] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Lončar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536-1537(2017).

    [14] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).

    [15] B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, M. Lončar. Diamond nonlinear photonics. Nat. Photonics, 8, 369-374(2014).

    [16] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).

    [17] Z. Gong, A. Bruch, M. Shen, X. Guo, H. Jung, L. Fan, X. Liu, L. Zhang, J. Wang, J. Li, J. Yan, H. X. Tang. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett., 43, 4366-4369(2018).

    [18] D. J. Wilson, K. Schneider, S. Hönl, M. Anderson, Y. Baumgartner, L. Czornomaz, T. J. Kippenberg, P. Seidler. Integrated gallium phosphide nonlinear photonics. Nat. Photonics, 14, 57-62(2020).

    [19] X. Lu, J. Y. Lee, S. Rogers, Q. Lin. Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. Opt. Express, 22, 30826-30832(2014).

    [20] L. Chang, W. Xie, H. Shu, Q.-F. Yang, B. Shen, A. Boes, J. D. Peters, W. Jin, C. Xiang, S. Liu, G. Moille, S.-P. Yu, X. Wang, K. Srinivasan, S. B. Papp, K. Vahala, J. E. Bowers. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 11, 1331(2020).

    [21] A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, M. R. Watts. Ultralow-loss silicon ring resonators. Opt. Lett., 37, 4236-4238(2012).

    [22] S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, M. Lipson. Low-loss silicon platform for broadband mid-infrared photonics. Optica, 4, 707-712(2017).

    [23] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, K. Vahala. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015).

    [24] M.-G. Suh, K. Vahala. Gigahertz-repetition-rate soliton microcombs. Optica, 5, 65-66(2018).

    [25] G. Li, P. Liu, X. Jiang, C. Yang, J. Ma, H. Wu, M. Xiao. High-Q silica microdisk optical resonators with large wedge angles on a silicon chip. Photon. Res., 3, 279-282(2015).

    [26] J. Ma, L. Xiao, J. Gu, H. Li, X. Cheng, G. He, X. Jiang, M. Xiao. Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle. Photon. Res., 7, 573-578(2019).

    [27] C. Pyrlik, J. Schlegel, F. Böhm, A. Thies, O. Krüger, O. Benson, A. Wicht, G. Tränkle. Integrated thermal silica micro-resonator waveguide system with ultra-low fluorescence. IEEE Photon. Technol. Lett., 31, 479-482(2019).

    [28] X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, O. Painter. High-Q double-disk microcavities for cavity optomechanics. Opt. Express, 17, 20911-20919(2009).

    [29] T. Uchida. Application of radio-frequency discharged plasma produced in closed magnetic neutral line for plasma processing. Jpn. J. Appl. Phys., 33, L43-L44(1994).

    [30] T. Uchida, S. Hamaguchi. Magnetic neutral loop discharge (NLD) plasmas for surface processing. J. Phys. D, 41, 083001(2008).

    [31] M. Cai, O. Painter, K. J. Vahala. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett., 85, 74-77(2000).

    [32] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 12, 4742-4750(2004).

    [33] T. Kippenberg, S. Spillane, K. Vahala. Modal coupling in traveling-wave resonators. Opt. Lett., 27, 1669-1671(2002).

    [34] M. L. Gorodetsky, A. D. Pryamikov, V. S. Ilchenko. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, 17, 1051-1057(2000).

    [35] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Maleki. Optical resonators with ten million finesse. Opt. Express, 15, 6768-6773(2007).

    [36] C. Dong, C. Zou, J. Cui, Y. Yang, Z. Han, G. Guo. Ringing phenomenon in silica microspheres. Chin. Opt. Lett., 7, 299-301(2009).

    [37] K. Y. Yang, K. Beha, D. C. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Y. Oh, S. A. Diddams, S. B. Papp, K. J. Vahala. Broadband dispersion-engineered microresonator on a chip. Nat. Photonics, 10, 316-320(2016).

    [38] H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala. Ultra-low-loss optical delay line on a silicon chip. Nat. Commun., 3, 867(2012).

    CLP Journals

    [1] Xiaobao Zhang, Guoping Lin, Tang Sun, Qinghai Song, Guangzong Xiao, Hui Luo. Dispersion engineering and measurement in crystalline microresonators using a fiber ring etalon[J]. Photonics Research, 2021, 9(11): 2222

    Jiaxin Gu, Jie Liu, Ziqi Bai, Han Wang, Xinyu Cheng, Guanyu Li, Menghua Zhang, Xinxin Li, Qi Shi, Min Xiao, Xiaoshun Jiang. Dry-etched ultrahigh-Q silica microdisk resonators on a silicon chip[J]. Photonics Research, 2021, 9(5): 722
    Download Citation