• Journal of Semiconductors
  • Vol. 42, Issue 4, 041301 (2021)
Hao Sun, Mostafa Khalil, Zifei Wang, and Lawrence R. Chen
DOI: 10.1088/1674-4926/42/4/041301 Cite this Article
Hao Sun, Mostafa Khalil, Zifei Wang, Lawrence R. Chen. Recent progress in integrated electro-optic frequency comb generation[J]. Journal of Semiconductors, 2021, 42(4): 041301 Copy Citation Text show less
References

[1]

[2] L E Hargrove, R L Fork, M A Pollack. Locking of He –Ne laser modes induced by synchronous intracavity modulation. Appl Phys Lett, 5, 4(1964).

[3] T W Hänsch. Nobel lecture: Passion for precision. Rev Mod Phys, 78, 1297(2006).

[4] J L Hall. Nobel lecture: Defining and measuring optical frequencies. Rev Mod Phys, 78, 1279(2006).

[5] T Udem, R Holzwarth, T W Hänsch. Optical frequency metrology. Nature, 416, 233(2002).

[6] M G Suh, Q F Yang, K Y Yang et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600(2016).

[7] A Dutt, C Joshi, X C Ji et al. On-chip dual-comb source for spectroscopy. Sci Adv, 4, e1701858(2018).

[8] M G Suh, K J Vahala. Soliton microcomb range measurement. Science, 359, 884(2018).

[9] T Wilken, G L Curto, R A Probst et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature, 485, 611(2012).

[10] T Steinmetz, T Wilken, C Araujo-Hauck et al. Laser frequency combs for astronomical observations. Science, 321, 1335(2008).

[11] D T Spencer, T Drake, T C Briles et al. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81(2018).

[12] W Liang, D Eliyahu, V S Ilchenko et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat Commun, 6, 7957(2015).

[13] X Y Xu, J Y Wu, T G Nguyen et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt Express, 26, 2569(2018).

[14] V Torres-Company, A M Weiner. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev, 8, 368(2014).

[15] M Imran, P M Anandarajah, A Kaszubowska-Anandarajah et al. A survey of optical carrier generation techniques for terabit capacity elastic optical networks. IEEE Commun Surv Tutorials, 20, 211(2018).

[16] A E Willner, A Fallahpour, K H Zou et al. Optical signal processing aided by optical frequency combs. IEEE J Sel Top Quantum Electron, 27, 1(2021).

[17] J C Lin, H Sepehrian, Y L Xu et al. Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks. IEEE Photonics Technol Lett, 30, 1495(2018).

[18] D J Jones, S A Diddams, J K Ranka et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635(2000).

[19] A Ortigosa-Blanch, J Mora, J Capmany et al. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser. Opt Lett, 31, 709(2006).

[20] M Zhang, B Buscaino, C Wang et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373(2019).

[21] B Stern, X C Ji, Y Okawachi et al. Battery-operated integrated frequency comb generator. Nature, 562, 401(2018).

[22] T J Kippenberg, R Holzwarth, S A Diddams. Microresonator-based optical frequency combs. Science, 332, 555(2011).

[23] J S Levy, A Gondarenko, M A Foster et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photonics, 4, 37(2010).

[24] A G Griffith, R K W Lau, J Cardenas et al. Silicon-chip mid-infrared frequency comb generation. Nat Commun, 6, 1(2015).

[25] T J Kippenberg, A L Gaeta, M Lipson et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

[26] X Yi, Q F Yang, K Y Yang et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078(2015).

[27] H J Chen, Q X Ji, H Wang et al. Chaos-assisted two-octave-spanning microcombs. Nat Commun, 11, 2336(2020).

[28] A Parriaux, K Hammani, G Millot. Electro-optic frequency combs. Adv Opt Photon, 12, 223(2020).

[29] I L Gheorma, G K Gopalakrishnan. Flat frequency comb generation with an integrated dual-parallel modulator. IEEE Photonics Technol Lett, 19, 1011(2007).

[30] Z Jiang, C B Huang, D E Leaird et al. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat Photonics, 1, 463(2007).

[31] R Wu, V R Supradeepa, C M Long et al. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett, 35, 3234(2010).

[32] M A Soto, M Alem, M Amin Shoaie et al. Optical sinc-shaped Nyquist pulses of exceptional quality. Nat Commun, 4, 2898(2013).

[33] C Weimann, P C Schindler, R Palmer et al. Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. Opt Express, 22, 3629(2014).

[34] I Demirtzioglou, C Lacava, K R H Bottrill et al. Frequency comb generation in a silicon ring resonator modulator. Opt Express, 26, 790(2018).

[35] B Buscaino, M Zhang, M Lončar et al. Design of efficient resonator-enhanced electro-optic frequency comb generators. J Lightwave Technol, 38, 1400(2020).

[36] S Cordette, A Vedadi, M A Shoaie et al. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing. Opt Lett, 39, 6668(2014).

[37] M J Yu, C Wang, M Zhang et al. Chip-based lithium-niobate frequency combs. IEEE Photonics Technol Lett, 31, 1894(2019).

[38] T H Ren, M Zhang, C Wang et al. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photonics Technol Lett, 31, 889(2019).

[39] A Shams-Ansari, M J Yu, Z J Chen et al. Microring electro-optic frequency comb sources for dual-comb spectroscopy. CLEO: QELS_Fundamental Science, JTh5B. 8(2019).

[40]

[41]

[42] N Yokota, H Yasaka. Operation strategy of InP Mach–Zehnder modulators for flat optical frequency comb generation. IEEE J Quantum Electron, 52, 1(2016).

[43] R Slavík, S G Farwell, M J Wale et al. Compact optical comb generator using InP tunable laser and push-pull modulator. IEEE Photonics Technol Lett, 27, 217(2015).

[44] N Andriolli, T Cassese, M Chiesa et al. Photonic integrated fully tunable comb generator cascading optical modulators. J Lightwave Technol, 36, 5685(2018).

[45] F Bontempi, N Andriolli, F Scotti et al. Comb line multiplication in an InP integrated photonic circuit based on cascaded modulators. IEEE J Sel Top Quantum Electron, 25, 1(2019).

[46] K P Nagarjun, V Jeyaselvan, S K Selvaraja et al. Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators. Opt Express, 26, 10744(2018).

[47]

[48] Y L Xu, J C Lin, R Dubé-Demers et al. Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators. Opt Lett, 43, 1554(2018).

[49]

[50]

[51] Z F Wang, M Ma, H Sun et al. Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators. IEEE J Quantum Electron, 55, 1(2019).

[52]

[53] S Q Liu, K Wu, L J Zhou et al. Optical frequency comb and nyquist pulse generation with integrated silicon modulators. IEEE J Sel Top Quantum Electron, 26, 1(2020).

[54] R Dubé-Demers, S LaRochelle, W Shi. Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator. Optica, 3, 622(2016).

[55] D Marpaung, C Roeloffzen, R Heideman et al. Integrated microwave photonics. Laser Photonics Rev, 7, 506(2013).

[56] Y Ogiso, J Ozaki, Y Ueda et al. Over 67 GHz bandwidth and 1.5 V vπ InP-based optical IQ modulator with n-i-p-n heterostructure. J Lightwave Technol, 35, 1450(2017).

[57] K A Williams, E A J M Bente, D Heiss et al. InP photonic circuits using generic integration. Photon Res, 3, B60(2015).

[58] F A Kish, D Welch, R Nagarajan et al. Current status of large-scale InP photonic integrated circuits. IEEE J Quantum Electron, 7, 1470(2011).

[59] M Bazzan, C Sada. Optical waveguides in lithium niobate: Recent developments and applications. Appl Phys Rev, 2, 040603(2015).

[60] R B Wu, M Wang, J Xu et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials, 8, 910(2018).

[61] M Zhang, C Wang, R Cheng et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017).

[62] C Wang, M Zhang, X Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

[63] M B He, M Y Xu, Y X Ren et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 13, 359(2019).

[64] D X Xu, A Densmore, P Waldron et al. High bandwidth SOI photonic wire ring resonators using MMI couplers. Opt Express, 15, 3149(2007).

[65] M Jacques, Z P Xing, A Samani et al. 240 gbit/s silicon photonic Mach-Zehnder modulator enabled by two 2.3-Vpp drivers. J Lightwave Technol, 38, 2877(2020).

[66] D Pérez, I Gasulla, J Capmany. Programmable multifunctional integrated nanophotonics. Nanophotonics, 7, 1351(2018).

[67] M A Baghban, J Schollhammer, C Errando-Herranz et al. Bragg gratings in thin-film LiNbO3 waveguides. Opt Express, 25, 32323(2017).

[68]

Hao Sun, Mostafa Khalil, Zifei Wang, Lawrence R. Chen. Recent progress in integrated electro-optic frequency comb generation[J]. Journal of Semiconductors, 2021, 42(4): 041301
Download Citation