• Photonics Research
  • Vol. 10, Issue 9, 2081 (2022)
Chunhui Yao1, Qixiang Cheng1、*, Günther Roelkens2, and Richard Penty1
Author Affiliations
  • 1Centre for Photonic Systems, Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
  • 2Department of Information Technology (INTEC), Photonics Research Group, Ghent University-imec, 9052 Ghent, Belgium
  • show less
    DOI: 10.1364/PRJ.465765 Cite this Article Set citation alerts
    Chunhui Yao, Qixiang Cheng, Günther Roelkens, Richard Penty. Bridging the gap between resonance and adiabaticity: a compact and highly tolerant vertical coupling structure[J]. Photonics Research, 2022, 10(9): 2081 Copy Citation Text show less
    References

    [1] F. Kish, V. Lal, P. Evans, S. W. Corzine, M. Ziari, T. Butrie, M. Reffle. System-on-chip photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 24, 6100120(2017).

    [2] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, K. Bergman. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).

    [3] S. Arafin, L. A. Coldren. Advanced InP photonic integrated circuits for communication and sensing. IEEE J. Sel. Top. Quantum Electron., 24, 6100612(2017).

    [4] K. Kitayama, M. Notomi, M. Naruse, K. Inoue, S. Kawakami, A. Uchida. Novel frontier of photonics for data processing—photonic accelerator. APL Photon., 4, 90901(2019).

    [5] Y. Su, Y. Zhang, C. Qiu, X. Guo, L. Sun. Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications. Adv. Mater. Technol., 5, 1901153(2020).

    [6] N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, P. T. Rakich. A silicon Brillouin laser. Science, 360, 1113-1116(2018).

    [7] M. L. Davenport, S. Skendžić, N. Volet, J. C. Hulme, M. J. R. Heck, J. E. Bowers. Heterogeneous silicon/III–V semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron., 22, 78-88(2016).

    [8] G.-H. Duan, S. Olivier, S. Malhouitre, A. Accard, P. Kaspar, G. Valicourtde, G. Levaufre, N. Girard, A. LiepvreLe, A. Shen, D. Make. New advances on heterogeneous integration of III–V on silicon. J. Lightwave Technol., 33, 976-983(2015).

    [9] S. Feng, Y. Geng, K. M. Lau, A. W. Poon. Epitaxial III-V-on-silicon waveguide butt-coupled photodetectors. Opt. Lett., 37, 4035-4037(2012).

    [10] R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M. C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets. III–V-on-silicon photonic integrated circuits for spectroscopic sensing in the 2–4  μm wavelength range. Sensors, 17, 1788(2017).

    [11] H. Duprez, A. Descos, T. Ferrotti, C. Sciancalepore, C. Jany, K. Hassan, C. Seassal, S. Menezo, B. B. Bakir. 1310  nm hybrid InP/InGaAsP on silicon distributed feedback laser with high side-mode suppression ratio. Opt. Express, 23, 8489-8497(2015).

    [12] A. Y. Liu, J. Bowers. Photonic integration with epitaxial III-V on silicon. IEEE J. Sel. Top. Quantum Electron., 24, 6000412(2018).

    [13] Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, D. Van Thourhout. Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer. Optica, 4, 1468-1473(2017).

    [14] Y. Hu, D. Liang, K. Mukherjee, Y. Li, C. Zhang, G. Kurczveil, X. Huang, R. G. Beausoleil. III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template. Light Sci. Appl., 8, 93(2019).

    [15] T. Matsumoto, T. Kurahashi, R. Konoike, K. Suzuki, K. Tanizawa, A. Uetake, K. Takabayashi, K. Ikeda, H. Kawashima, S. Akiyama, S. Sekiguchi. Hybrid-integration of SOA on silicon photonics platform based on flip-chip bonding. J. Lightwave Technol., 37, 307-313(2019).

    [16] R. A. Budd, L. Schares, B. G. Lee, F. E. Doany, C. Baks, D. M. Kuchta, C. L. Schow, F. Libsch. Semiconductor optical amplifier (SOA) packaging for scalable and gain-integrated silicon photonic switching platforms. IEEE 65th Electronic Components and Technology Conference, 1280-1286(2015).

    [17] S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, G. Roelkens. 13  μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt. Express, 26, 18302-18309(2018).

    [18] A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express, 14, 9203-9210(2006).

    [19] J. Yoon, S. M. Lee, D. Kang, M. A. Meitl, C. A. Bower, J. A. Rogers. Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing. Adv. Opt. Mater., 3, 1313-1335(2015).

    [20] J. Zhang, B. Haq, J. O’Callaghan, A. Gocalinska, E. Pelucchi, A. J. Trindade, B. Corbett, G. Morthier, G. Roelkens. Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser. Opt. Express, 26, 8821-8830(2018).

    [21] S. Graf. ASM AMICRA unveils industry’s first manufacturing systems incorporating X-Celeprint’s MTP technology for high volume heterogeneous integration of ultra-thin chips(2021).

    [22] . Micro-transfer printing with x-chips(2021).

    [23] B. Haq, S. Kumari, K. Van Gasse, J. Zhang, A. Gocalinska, E. Pelucchi, B. Corbett, G. Roelkens. Micro-transfer-printed III-V-on-silicon C-band semiconductor optical amplifiers. Laser Photon. Rev., 14, 1900364(2020).

    [24] R. Stabile, A. Albores-Mejia, A. Rohit, K. A. Williams. Integrated optical switch matrices for packet data networks. Microsyst. Nanoeng., 2, 15042(2016).

    [25] Q. Cheng, A. Wonfor, R. V. Penty, I. H. White. Scalable, low-energy hybrid photonic space switch. J. Lightwave Technol., 31, 3077-3084(2013).

    [26] R. A. Athale, W. C. Collins. Optical matrix–matrix multiplier based on outer product decomposition. Appl. Opt., 21, 2089-2090(1982).

    [27] Q. Cheng, J. Kwon, M. Glick, M. Bahadori, L. P. Carloni, K. Bergman. Silicon photonics codesign for deep learning. Proc. IEEE, 108, 1261-1282(2020).

    [28] M.-K. Chin, C.-W. Lee, J. Shen. Polarization-independent vertical coupler for photonics integration. Opt. Express, 12, 117-123(2004).

    [29] A. Wieczorek, B. Roycroft, F. H. Peters, B. Corbett. Loss analysis and increasing of the fabrication tolerance of resonant coupling by tapering the mode beating section. Opt. Quantum Electron., 42, 521-529(2011).

    [30] Ó. G. López, D. Lasaosa, M. López-Amo, M. Galarza. Highly-efficient fully resonant vertical couplers for InP active-passive monolithic integration using vertically phase matched waveguides. Opt. Express, 21, 22717-22727(2013).

    [31] F. Xia, V. M. Menon, S. R. Forrest. Photonic integration using asymmetric twin-waveguide (ATG) technology: part I—concepts and theory. IEEE J. Sel. Top. Quantum Electron., 11, 17-29(2005).

    [32] M. Galarza, D. Van Thourhout, R. Baets, M. López-Amo. Compact and highly-efficient vertical couplers for active-passive monolithic integration. Optics InfoBase Conference, 16, 8350-8358(2005).

    [33] S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, X. Chen. Short and robust directional couplers designed by shortcuts to adiabaticity. Opt. Express, 22, 18849-18859(2014).

    [34] Q. Huang, J. Cheng, L. Liu, Y. Tang, S. He. Ultracompact tapered coupler for the Si/III–V heterogeneous integration. Appl. Opt., 54, 4327-4332(2015).

    [35] A. He, X. Guo, H. Wang, L. Sun, Y. Su. Ultra-compact coupling structures for heterogeneously integrated silicon lasers. J. Lightwave Technol., 38, 3974-3982(2020).

    [36] Y. Fu, T. Ye, W. Tang, T. Chu. Efficient adiabatic silicon-on-insulator waveguide taper. Photon. Res., 2, A41-A44(2014).

    [37] X. Sun, A. Yariv. Engineering supermode silicon/III-V hybrid waveguides for laser oscillation. J. Opt. Soc. Am. B, 25, 923-926(2008).

    [38] J. Pu, K. P. Lim, D. K. T. Ng, V. Krishnamurthy, C. W. Lee, K. Tang, A. Y. S. Kay, T. H. Loh, Q. Wang. Heterogeneously integrated III-V laser on thin SOI with compact optical vertical interconnect access. Opt. Lett., 40, 1378-1381(2015).

    [39] V. M. Menon, F. Xia, S. R. Forrest. Photonic integration using asymmetric twin-waveguide (ATG) technology: part II-devices. IEEE J. Sel. Top. Quantum Electron., 11, 30-42(2005).

    [40] M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. López-Amo, I. Moerman, P. Van Daele, R. G. Baets. Mode-expanded 1.55-μm InP-InGaAsP Fabry-Perot lasers using ARROW waveguides for efficient fiber coupling. IEEE J. Sel. Top. Quantum Electron., 8, 1389-1398(2002).

    [41] A. K. Taras, A. Tuniz, M. A. Bajwa, V. Ng, J. M. Dawes, C. G. Poulton, C. M. De Sterke. Shortcuts to adiabaticity in waveguide couplers–theory and implementation. Adv. Phys. X, 6, 1894978(2021).

    [42] X. Sun, H. Liu, A. Yariv. Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Opt. Lett., 34, 280-282(2009).

    [43] C. de Beeck, B. Haq, L. Elsinger, A. Gocalinska, E. Pelucchi, B. Corbett, G. Roelkens, B. Kuyken. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica, 7, 386-393(2020).

    [44] C. Liu, G. Zhao, F. Yang, Q. Lu, W. Guo. Design of compact but fabrication-tolerant vertical coupler for active-passive integration. J. Lightwave Technol., 36, 755-762(2018).

    [45] S. Keyvaninia, M. Muneeb, S. Stanković, P. J. V. Veldhoven, D. Van Thourhout, G. Roelkens. Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt. Mater. Express, 3, 35-46(2013).

    [46] J. Zhang, G. Muliuk, J. Juvert, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Lepage, P. Verheyen, J. Van Campenhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, G. Roelkens. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photon., 4, 110803(2019).

    [47] S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G. H. Duan, D. Bordel, J. M. Fedeli. Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser. Opt. Express, 21, 3784-3792(2013).

    [48] A. Yariv. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron., 9, 919-933(1973).

    [49] W.-P. Huang. Coupled-mode theory for optical waveguides: an overview. J. Opt. Soc. Am. A, 11, 963-983(1994).

    [50] D. F. G. Gallagher, T. P. Felici. Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons. Proc. SPIE, 4987, 69-82(2003).

    [51] Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, M. Hochberg. Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect. Opt. Express, 21, 29374-29382(2013).

    [52] Y. Zhang, S. Yang, A. E. J. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg. A compact and low loss Y-junction for submicron silicon waveguide. Opt. Express, 21, 1310-1316(2013).

    [53] C. Yao, Z. Wang, H. Wang, Y. He, Y. Zhang, Y. Su. On-chip multi-mode manipulation via 2D refractive-index perturbation on a waveguide. Adv. Opt. Mater., 8, 2000996(2020).

    [54] I. C. Trelea. The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett., 85, 317-325(2003).

    [55] P. R. Wiecha, A. Arbouet, C. Girard, O. L. Muskens. Deep learning in nano-photonics: inverse design and beyond. Photon. Res., 9, B182-B200(2021).

    [56] Z. Liu, D. Zhu, L. Raju, W. Cai. Tackling photonic inverse design with machine learning. Adv. Sci., 8, 2002923(2021).

    [57] W. A. Zortman, D. C. Trotter, M. R. Watts. Silicon photonics manufacturing. Opt. Express, 18, 23598-23607(2010).

    [58] M. Mondry, D. Babic, J. Bowers, L. Coldren. Refractive indexes of (Al, Ga, In) As epilayers on InP for optoelectronic applications. IEEE Photon. Technol. Lett., 4, 627-630(1992).

    [59] T. Aihara, T. Hiraki, T. Fujii, K. Takeda, T. Kakitsuka, T. Tsuchizawa, S. Matsuo. Membrane III-V/Si DFB laser using uniform grating and width-modulated Si waveguide. J. Lightwave Technol., 38, 2961-2967(2020).

    [60] D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, J. E. Bowers. Sub-kHz linewidth extended-DBR lasers heterogeneously integrated on silicon. Optical Fiber Communication Conference and Exhibition (OFC), W4E.4(2019).

    [61] P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, J. Van Campenhout. Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform. Proc. SPIE, 9367, 93670V(2015).

    [62] W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G. Q. Lo, E. Bernier. Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions. Opt. Express, 25, 30862-30875(2017).

    [63] W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier. Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices. Proc. IEEE, 106, 2232-2245(2018).

    [64] L. Sun, Y. Zhang, Y. He, H. Wang, Y. Su. Subwavelength structured silicon waveguides and photonic devices. Nanophotonics, 9, 1321-1340(2020).

    [65] S. Cuyvers, B. Haq, C. O. de Beeck, S. Poelman, A. Hermans, Z. Wang, A. Gocalinska, E. Pelucchi, B. Corbett, G. Roelkens, K. Van Gasse. Low noise heterogeneous III-V-on-silicon-nitride mode-locked comb laser. Laser Photon. Rev., 15, 2000485(2021).

    [66] Ó. G. López, D. Van Thourhout, S. Verstuyft, M. López-Amo, R. Baets, M. Galarza. Vertically coupled InP/InGaAsP microring lasers using a single epitaxial growth and single-side lithography. J. Lightwave Technol., 38, 3983-3987(2020).

    Chunhui Yao, Qixiang Cheng, Günther Roelkens, Richard Penty. Bridging the gap between resonance and adiabaticity: a compact and highly tolerant vertical coupling structure[J]. Photonics Research, 2022, 10(9): 2081
    Download Citation