• Journal of Semiconductors
  • Vol. 43, Issue 6, 062803 (2022)
Hao Wu1、2, Xuanwu Kang2, Yingkui Zheng2, Ke Wei2, Lin Zhang3, Xinyu Liu2, and Guoqi Zhang1
Author Affiliations
  • 1The Institute of Future Lighting, Academy for Engineering and Technology, Fudan University (FAET), Shanghai 200433, China
  • 2Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
  • 3Beijing Const-Intellectual Core Technology Co. Ltd, Beijing 100029, China
  • show less
    DOI: 10.1088/1674-4926/43/6/062803 Cite this Article
    Hao Wu, Xuanwu Kang, Yingkui Zheng, Ke Wei, Lin Zhang, Xinyu Liu, Guoqi Zhang. Optimization of recess-free AlGaN/GaN Schottky barrier diode by TiN anode and current transport mechanism analysis[J]. Journal of Semiconductors, 2022, 43(6): 062803 Copy Citation Text show less
    References

    [1] K J Chen, O Häberlen, A Lidow et al. GaN-on-Si power technology: Devices and applications. IEEE Trans Electron Devices, 64, 779(2017).

    [2] A Eblabla, X Li, M Alathbah et al. Multi-channel AlGaN/GaN lateral Schottky barrier diodes on low-resistivity silicon for sub-THz integrated circuits applications. IEEE Electron Device Lett, 40, 878(2019).

    [3] L Nela, G Kampitsis, J Ma et al. Fast-switching tri-anode Schottky barrier diodes for monolithically integrated GaN-on-Si power circuits. IEEE Electron Device Lett, 41, 99(2020).

    [4] M Xiao, Y W Ma, K Cheng et al. 3.3 kV multi-channel AlGaN/GaN Schottky barrier diodes with P-GaN termination. IEEE Electron Device Lett, 41, 1177(2020).

    [5] S W Han, J N Song, S H Yoo et al. Experimental demonstration of charge- balanced GaN super-heterojunction Schottky barrier diode capable of 2.8 kV switching. IEEE Electron Device Lett, 41, 1758(2020).

    [6] K Dang, J C Zhang, H Zhou et al. Lateral GaN Schottky barrier diode for wireless high-power transfer application with high RF/DC conversion efficiency: From circuit construction and device technologies to system demonstration. IEEE Trans Ind Electron, 67, 6597(2020).

    [7] K Dang, J C Zhang, H Zhou et al. A 5.8-GHz high-power and high-efficiency rectifier circuit with lateral GaN Schottky diode for wireless power transfer. IEEE Trans Power Electron, 35, 2247(2020).

    [8] S Lenci, B de Jaeger, L Carbonell et al. Au-free AlGaN/GaN power diode on 8-in Si substrate with gated edge termination. IEEE Electron Device Lett, 34, 1035(2013).

    [9] J Hu, S Stoffels, S Lenci et al. Performance optimization of Au-free lateral AlGaN/GaN Schottky barrier diode with gated edge termination on 200-mm silicon substrate. IEEE Trans Electron Devices, 63, 997(2016).

    [10] J Biscarrat, R Gwoziecki, Y Baines et al. Performance enhancement of CMOS compatible 600V rated AlGaN/GaN Schottky diodes on 200mm silicon wafers. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs, 200(2018).

    [11] Y Li, G I Ng, S Arulkumaran et al. AlGaN/GaN high electron mobility transistors on Si with sputtered TiN gate. Phys Status Solidi A, 214, 1600555(2017).

    [12] T Kawanago, K Kakushima, Y Kataoka et al. Gate technology contributions to collapse of drain current in AlGaN/GaN Schottky HEMT. IEEE Trans Electron Devices, 61, 785(2014).

    [13] L A Li, R Nakamura, Q P Wang et al. Synthesis of titanium nitride for self-aligned gate AlGaN/GaN heterostructure field-effect transistors. Nanoscale Res Lett, 9, 590(2014).

    [14] H Kim, M Schuette, H Jung et al. Passivation effects in Ni/AlGaN/GaN Schottky diodes by annealing. Appl Phys Lett, 89, 053516(2006).

    [15] H Wu, X W Kang, Y K Zheng et al. Analysis of reverse leakage mechanism in recess-free thin-barrier AlGaN/GaN Schottky barrier diode. Jpn J Appl Phys, 60, 024002(2021).

    [16] X W Kang, X H Wang, S Huang et al. Recess-free AlGaN/GaN lateral Schottky barrier controlled Schottky rectifier with low turn-on voltage and high reverse blocking. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs, 280(2018).

    [17] X W Kang, Y K Zheng, H Wu et al. Thin-barrier gated-edge termination AlGaN/GaN Schottky barrier diode with low reverse leakage and high turn-on uniformity. Semicond Sci Technol, 36, 094001(2021).

    [18] G Sjoblom, J Westlinder, J Olsson. Investigation of the thermal stability of reactively sputter-deposited TiN MOS gate electrodes. IEEE Trans Electron Devices, 52, 2349(2005).

    [19] D M Sathaiya, S Karmalkar. Edge effects on gate tunneling current in HEMTs. IEEE Trans Electron Devices, 54, 2614(2007).

    [20] S Saadaoui, M Mongi Ben Salem, M Gassoumi et al. Electrical characterization of (Ni/Au)/Al0.25Ga0.75N/GaN/SiC Schottky barrier diode. J Appl Phys, 110, 013701(2011).

    [21] A R Arehart, B Moran, J S Speck et al. Effect of threading dislocation density on Ni/n-GaN Schottky diode I-V characteristics. J Appl Phys, 100, 023709(2006).

    [22] H Kim, K M Song. Dislocation-related electron transport in Au Schottky junctions on AlGaN/GaN. Trans Electr Electron Mater, 19, 101(2018).

    [23] A Chatterjee, S K Khamari, V K Dixit et al. Dislocation-assisted tunnelling of charge carriers across the Schottky barrier on the hydride vapour phase epitaxy grown GaN. J Appl Phys, 118, 175703(2015).

    [24] K R Peta, B G Park, S T Lee et al. Analysis of electrical properties and deep level defects in undoped GaN Schottky barrier diode. Thin Solid Films, 534, 603(2013).

    [25] R T Tung. Electron transport at metal-semiconductor interfaces: General theory. Phys Rev B, 45, 13509(1992).

    [26] R F Schmitsdorf. Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers. J Vac Sci Technol B, 15, 1221(1997).

    [27] D Qiao, L S Yu, S S Lau et al. Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction. J Appl Phys, 87, 801(1999).

    [28] D W Yan, H Lu, D S Cao et al. On the reverse gate leakage current of AlGaN/GaN high electron mobility transistors. Appl Phys Lett, 97, 153503(2010).

    [29] O Ambacher, J Smart, J R Shealy et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J Appl Phys, 85, 3222(1999).

    [30] D Mahaveer Sathaiya, S Karmalkar. Thermionic trap-assisted tunneling model and its application to leakage current in nitrided oxides and AlGaN∕GaN high electron mobility transistors. J Appl Phys, 99, 093701(2006).

    [31] J R Yeargan, H L Taylor. The Poole-Frenkel effect with compensation present. J Appl Phys, 39, 5600(1968).

    [32] H Zhang, E J Miller, E T Yu. Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N∕GaN grown by molecular-beam epitaxy. J Appl Phys, 99, 023703(2006).

    [33] Z Q Fang, G C Farlow, B Claflin et al. Effects of electron-irradiation on electrical properties of AlGaN/GaN Schottky barrier diodes. J Appl Phys, 105, 123704(2009).

    [34] Z Q Fang, D C Look, D H Kim et al. Traps in AlGaN/GaN/SiC heterostructures studied by deep level transient spectroscopy. Appl Phys Lett, 87, 182115(2005).

    [35] T Katsuno, M Kanechika, K Itoh et al. Improvement of current collapse by surface treatment and passivation layer in p-GaN gate GaN high-electron-mobility transistors. Jpn J Appl Phys, 52, 04CF08(2013).

    [36] D K Johnstonea, M Ahoujjab, Y K Yeoc et al. Deep centers and their capture barriers in MOCVD-grown GaN. MRS Proc, 692, H2.7.1(2001).

    [37] P G Whiting, M R Holzworth, A G Lind et al. Erosion defect formation in Ni-gate AlGaN/GaN high electron mobility transistors. Microelectron Reliab, 70, 32(2017).

    [38] A D Koehler, N Nepal, T J Anderson et al. Atomic layer epitaxy AlN for enhanced AlGaN/GaN HEMT passivation. IEEE Electron Device Lett, 34, 1115(2013).

    [39] Y N Xu, W Y Ching. Electronic, optical, and structural properties of some wurtzite crystals. Phys Rev B, 48, 4335(1993).

    [40] H Hasegawa, T Inagaki, S Ootomo et al. Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors. J Vac Sci Technol B, 21, 1844(2003).

    Hao Wu, Xuanwu Kang, Yingkui Zheng, Ke Wei, Lin Zhang, Xinyu Liu, Guoqi Zhang. Optimization of recess-free AlGaN/GaN Schottky barrier diode by TiN anode and current transport mechanism analysis[J]. Journal of Semiconductors, 2022, 43(6): 062803
    Download Citation