• Photonics Research
  • Vol. 8, Issue 11, 1676 (2020)
Xiyuan Lu1、2、*, Ashutosh Rao1、3, Gregory Moille1、4, Daron A. Westly1, and Kartik Srinivasan1、4、5
Author Affiliations
  • 1Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
  • 2Institute for Research in Electronics and Applied Physics and Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, USA
  • 3Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
  • 4Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
  • 5e-mail: kartik.srinivasan@nist.gov
  • show less
    DOI: 10.1364/PRJ.401755 Cite this Article Set citation alerts
    Xiyuan Lu, Ashutosh Rao, Gregory Moille, Daron A. Westly, Kartik Srinivasan. Universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances[J]. Photonics Research, 2020, 8(11): 1676 Copy Citation Text show less
    References

    [1] G. Agrawal. Nonlinear Fiber Optics(2007).

    [2] R. W. Boyd. Nonlinear Optics(2008).

    [3] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [4] D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, G. Leuchs. Nonlinear and quantum optics with whispering gallery resonators. J. Opt., 18, 123002(2016).

    [5] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [6] Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, A. L. Gaeta. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett., 36, 3398-3400(2011).

    [7] J. S. Levy, M. A. Foster, A. L. Gaeta, M. Lipson. Harmonic generation in silicon nitride ring resonators. Opt. Express, 19, 11415-11421(2011).

    [8] F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photonics, 5, 770-776(2011).

    [9] X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, K. Srinivasan. Chip-integrated visible-telecom photon pair sources for quantum communication. Nat. Phys., 15, 373-381(2019).

    [10] Q. Li, M. Davanço, K. Srinivasan. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photonics, 10, 406-414(2016).

    [11] Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, K. Srinivasan. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 4, 193-203(2017).

    [12] M. Karpov, M. H. Pfeiffer, J. Liu, A. Lukashchuk, T. J. Kippenberg. Photonic chip-based soliton frequency combs covering the biological imaging window. Nat. Commun., 9, 1146(2018).

    [13] F. Samara, A. Martin, C. Autebert, M. Karpov, T. J. Kippenberg, H. Zbinden, R. Thew. High-rate photon pairs and sequential time-bin entanglement with Si3N4 microring resonators. Opt. Express, 27, 19309-19318(2019).

    [14] A. Singh, Q. Li, S. Liu, Y. Yu, X. Lu, C. Schneider, S. Höfling, J. Lawall, V. Verma, R. Mirin, S. W. Nam, J. Liu, K. Srinivasan. Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica, 6, 563-569(2019).

    [15] Q. Li, A. Singh, X. Lu, J. Lawall, V. Verma, R. Mirin, S. W. Nam, K. Srinivasan. Tunable quantum beat of single photons enabled by nonlinear nanophotonics. Phys. Rev. Appl., 12, 054054(2019).

    [16] X. Lu, G. Moille, A. Singh, Q. Li, D. A. Westly, A. Rao, S.-P. Yu, T. C. Briles, S. B. Papp, K. Srinivasan. Milliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics. Optica, 6, 1535-1541(2019).

    [17] X. Lu, G. Moille, A. Rao, D. A. Westly, K. Srinivasan. Efficient photo-induced second harmonic generation in silicon photonics(2020).

    [18] D. M. Lukin, C. Dory, M. A. Guidry, K. Y. Yang, S. D. Mishra, R. Trivedi, M. Radulaski, S. Sun, D. Vercruysse, G. H. Ahn, J. Vučković. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics, 14, 330-334(2020).

    [19] M. A. Guidry, K. Y. Yang, D. M. Lukin, A. Markosyan, J. Yang, M. M. Fejer, J. Vučković. Optical parametric oscillation in silicon carbide nanophotonics. Optica, 7, 1139-1142(2020).

    [20] T. Carmon, K. J. Vahala. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat. Phys., 3, 430-435(2007).

    [21] S. Fujii, T. Kato, R. Suzuki, T. Tanabe. Third-harmonic blue light generation from Kerr clustered combs and dispersive waves. Opt. Lett., 42, 2010-2013(2017).

    [22] J. H. Chen, X. Shen, S. J. Tang, Q. T. Cao, Q. Gong, Y. F. Xiao. Microcavity nonlinear optics with an organically functionalized surface. Phys. Rev. Lett., 123, 173902(2019).

    [23] X. Guo, C.-L. Zou, H. X. Tang. Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency. Optica, 3, 1126-1131(2016).

    [24] A. W. Bruch, X. Liu, J. B. Surya, C.-L. Zou, H. X. Tang. On-chip χ(2) microring optical parametric oscillator. Optica, 6, 1361-1366(2019).

    [25] Y. Tang, Z. Gong, X. Liu, H. X. Tang. Widely separated optical Kerr parametric oscillation in AlN microrings. Opt. Lett., 45, 1124-1127(2020).

    [26] P. S. Kuo, J. Bravo-Abad, G. S. Solomon. Second-harmonic generation using quasi-phasematching in a GaAs whispering-gallery-mode microcavity. Nat. Commun., 5, 3109(2014).

    [27] L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X. Guo, N. Volet, S. Yu, S. B. Papp, J. E. Bowers. Strong frequency conversion in heterogeneously integrated GaAs resonators. APL Photon., 4, 036103(2019).

    [28] W. Liang, A. A. Savchenkov, Z. Xie, J. F. McMillan, J. Burkhart, V. S. Ilchenko, C. W. Wong, A. B. Matsko, L. Maleki. Miniature multioctave light source based on a monolithic microcavity. Optica, 2, 40-47(2015).

    [29] N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, S. G. Murdoch. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nat. Photonics, 13, 701-707(2019).

    [30] S. Fujii, S. Tanaka, M. Fuchida, H. Amano, Y. Hayama, R. Suzuki, Y. Kakinuma, T. Tanabe. Octave-wide phase-matched four-wave mixing in dispersion engineered crystalline microresonators. Opt. Lett., 42, 3146-3149(2019).

    [31] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, L. Maleki. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett., 92, 043903(2004).

    [32] J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, Y. Cheng. Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl., 6, 014002(2016).

    [33] J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, H. X. Tang. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455-1460(2019).

    [34] R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, Q. Lin. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express, 25, 24531-24539(2017).

    [35] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, M. Lon. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [36] T. J. Kippenberg, S. Spillane, K. J. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93, 083904(2004).

    [37] D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, S. Haroche. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. Opt. Lett., 20, 1835-1837(1995).

    [38] A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar. Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. Phys. Rev. Lett., 99, 173603(2007).

    [39] J. Zhu, S. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 4, 46-49(2010).

    [40] C. M. Gentry, X. Zeng, M. A. Popović. Tunable coupled-mode dispersion compensation and its application to on-chip resonant four-wave mixing. Opt. Lett., 39, 5689-5692(2014).

    [41] D. D. Smith, H. Chang, K. A. Fuller. Whispering-gallery mode splitting in coupled microresonators. J. Opt. Soc. Am. B, 18, 1967-1974(2003).

    [42] A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, L. L. Goddard. Realization of a narrowband single wavelength microring mirror. Appl. Phys. Lett., 99, 091105(2011).

    [43] A. Li, W. Bogaerts. Experimental demonstration of a single silicon ring resonator with an ultra-wide FSR and tuning range. Opt. Lett., 42, 4986-4989(2017).

    [44] X. Lu, S. Rogers, W. C. Jiang, Q. Lin. Selective engineering of cavity resonance for frequency matching in optical parametric processes. Appl. Phys. Lett., 105, 151104(2014).

    [45] S.-P. Yu, D. C. Cole, H. Jung, G. T. Moille, K. Srinivasan, S. B. Papp. Spontaneous pulse formation in edge-less photonic crystal resonators(2020).

    [46] M. Borselli, T. J. Johnson, O. Painter. Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. Opt. Express, 13, 1515-1530(2005).

    [47] S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, Y. Fink. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E, 65, 066611(2002).

    [48] L. Ge, Q. Song, B. Redding, A. Ebersper, J. Wiersig, H. Cao. Controlling multimode coupling by boundary-wave scattering. Phys. Rev. A, 88, 043801(2013).

    [49] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [50] C. J. McKinstrie, J. D. Harvey, S. Radic, M. G. Raymer. Translation of quantum states by four-wave mixing in fibers. Opt. Express, 13, 9131-9142(2005).

    [51] B. Chen, Y. Wei, T. Zhao, S. Liu, B. Yao, Y. Yu, J. Liu, X.-H. Wang. A highly efficient integrated source of twisted single-photons(2020).

    [52] S. D. Rogers, A. Graf, U. A. Javid, Q. Lin. Coherent quantum dynamics of systems with coupling-induced creation pathways. Commun. Phys., 2, 95(2019).

    [53] K. C. Balram, D. A. Westly, M. I. Davanco, K. E. Grutter, Q. Li, T. Michels, C. H. Ray, R. J. Kasica, C. B. Wallin, I. J. Gilbert, B. A. Bryce, G. Simelgor, J. Topolancik, N. Lobontiu, Y. Liu, P. Neuzil, V. Svatos, K. A. Dill, N. A. Bertrand, M. Metzler, G. Lopez, D. Czaplewski, L. Ocola, K. A. Srinivasan, S. M. Stavis, V. A. Aksyuk, J. A. Liddle, S. Krylov, B. R. Ilic. The nanolithography toolbox. J. Res. Natl. Inst. Stand. Technol., 121, 464-475(2016).

    Xiyuan Lu, Ashutosh Rao, Gregory Moille, Daron A. Westly, Kartik Srinivasan. Universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances[J]. Photonics Research, 2020, 8(11): 1676
    Download Citation