• Acta Optica Sinica
  • Vol. 41, Issue 12, 1205002 (2021)
Liangliang Yang*, Chenglin Liu, Fahua Shen, and Yongbing Zhao
Author Affiliations
  • School of Physics and Electronic Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, China
  • show less
    DOI: 10.3788/AOS202141.1205002 Cite this Article Set citation alerts
    Liangliang Yang, Chenglin Liu, Fahua Shen, Yongbing Zhao. Diffraction Efficiency of Diffractive Optical Elements with Antireflection Coatings Within a Certain Incident Angle Range[J]. Acta Optica Sinica, 2021, 41(12): 1205002 Copy Citation Text show less
    References

    [1] Viotti M R, Kapp W. Albertazzi G J A, et al. Achromatic digital speckle pattern interferometer with constant radial in-plane sensitivity by using a diffractive optical element[J]. Applied Optics, 48, 2275-2281(2009).

    [2] Bian Y Y, Liu Y J, Jiang L et al. Design of double-zone aspheric diffractive intraocular lens with extended depth of focus[J]. Chinese Optics Letters, 16, 093301(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ61f32696e69722df

    [3] Yolalmaz A, Yüce E. Effective bandwidth approach for the spectral splitting of solar spectrum using diffractive optical elements[J]. Optics Express, 28, 12911-12921(2020). http://www.researchgate.net/publication/339802314_Effective_bandwidth_approach_for_spectral_splitting_of_solar_spectrum_using_diffractive_optical_elements

    [4] Yang M X, Kong Z, Tan Q F et al. Precise design of diffraction optical elements based on annular beam shaping[J]. Acta Optica Sinica, 39, 0305002(2019).

    [5] Gu J D, Liu Y J, Bian Y Y et al. A dual-area aspheric diffractive intraocular lens for large corneal asphericity variation[J]. Acta Optica Sinica, 40, 1022001(2020).

    [6] Zhang B, Cui Q F, Piao M X et al. Substrate material selection method for dual-band multilayer diffractive optical elements and its application in the zoom system[J]. Acta Optica Sinica, 40, 0605001(2020).

    [7] Yang L L, Cui Q F, Liu T et al. Effects of manufacturing errors on diffraction efficiency for multilayer diffractive optical elements[J]. Applied Optics, 50, 6128-6133(2011).

    [8] Greǐsukh G I, Ezhov E G, Stepanov S A et al. Taking diffractive efficiency into account in the design of refractive/diffractive optical systems[J]. Journal of Optical Technology, 83, 163-167(2016). http://www.researchgate.net/publication/305414882_Taking_diffractive_efficiency_into_account_in_the_design_of_refractivediffractive_optical_systems

    [9] Piao M X, Cui Q F, Zhang B et al. Optimization method of multilayer diffractive optical elements with consideration of ambient temperature[J]. Applied Optics, 57, 8861-8869(2018). http://www.ncbi.nlm.nih.gov/pubmed/30461869

    [10] Liu X G, Huo F R, Xue C X et al. Parameter optimization and error compensation of diffraction microlens injection molding process[J]. Laser & Optoelectronics Progress, 57, 052204(2020).

    [11] Dobrowolski J A, Sullivan B T. Universal antireflection coatings for substrates for the visible spectral region[J]. Applied Optics, 35, 4993-4997(1996). http://www.opticsinfobase.org/ao/fulltext.cfm?uri=ao-35-25-4993

    [12] Gaǐnutdinov I S, Shuvalov N Y, Sabirov R S et al. Antireflection coatings on germanium and silicon substrates in the 3-5-μm and 8-12-μm windows of IR transparency[J]. Journal of Optical Technology, 76, 302-305(2009). http://dx.doi.org/10.1364/jot.76.000302

    [13] Wang T T. Fabrication of hard infrared anti-reflection coating with broadband in the wavelength of 0.8-1.7 μm and 3.7-4.8 μm based on oxide material[J]. Chinese Optics, 7, 816-822(2014).

    [14] Cheng H J, Yu X H, Peng L et al. LaF3-ZnS-Ge high-durability MWIR antireflective film on Ge substrate[J]. Infrared and Laser Engineering, 48, 1117001(2019).

    [15] Yang H F, Xue C X, Li C et al. Diffraction efficiency sensitivity to oblique incident angle for multilayer diffractive optical elements[J]. Applied Optics, 55, 7126-7133(2016).

    [16] Zhang B, Cui Q F, Piao M X et al. Design of dual-band infrared zoom lens with multilayer diffractive optical elements[J]. Applied Optics, 58, 2058-2067(2019). http://www.researchgate.net/publication/331608423_Design_of_dual-band_infrared_zoom_lens_with_multilayer_diffractive_optical_elements

    [17] Sandfuchs O, Brunner R, Pätz D et al. Rigorous analysis of shadowing effects in blazed transmission gratings[J]. Optics Letters, 31, 3638-3640(2006). http://europepmc.org/abstract/MED/17130929

    [18] Yang L L, Liu C L, Li S Q et al. Optimal design of depth-scaling error for multilayer diffractive optical elements with oblique incidence[J]. Applied Optics, 56, 4532-4536(2017).

    [19] Mao S, Cui Q F, Piao M X et al. Optimal design method on diffractive optical elements with antireflection coatings[J]. Optics Express, 25, 11673-11678(2017). http://europepmc.org/abstract/MED/28788728

    [20] Xue C X, Cui Q F. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency[J]. Optics Letters, 35, 986-988(2010). http://www.ncbi.nlm.nih.gov/pubmed/20364192

    Liangliang Yang, Chenglin Liu, Fahua Shen, Yongbing Zhao. Diffraction Efficiency of Diffractive Optical Elements with Antireflection Coatings Within a Certain Incident Angle Range[J]. Acta Optica Sinica, 2021, 41(12): 1205002
    Download Citation