• Opto-Electronic Advances
  • Vol. 1, Issue 3, 180004 (2018)
Cizhe Fang1, Yan Liu1, Qingfang Zhang2, Genquan Han1、*, Xi Gao1, Yao Shao3, Jincheng Zhang1, and Yue Hao1
Author Affiliations
  • 1Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi’an 710071, China
  • 2Key Laboratory for Informatization Electrical Appliances of Henan Province, School of Electric and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
  • 3State Key Laboratory of Power Grid Security and Energy Conservation, China Electric Power Research Institute, Beijing 100192, China
  • show less
    DOI: 10.29026/oea.2018.180004 Cite this Article
    Cizhe Fang, Yan Liu, Qingfang Zhang, Genquan Han, Xi Gao, Yao Shao, Jincheng Zhang, Yue Hao. Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra[J]. Opto-Electronic Advances, 2018, 1(3): 180004 Copy Citation Text show less
    References

    [1] J Mathews, R T Beeler, J Tolle, C Xu, R Roucka et al. Direct-gap photoluminescence with tunable emission wavelength in Ge1-ySny alloys on silicon. Appl Phys Lett, 97, 221912(2010).

    [2] R Chen, H Lin, Y J Huo, C Hitzman, T I Kamins et al. Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy. Appl Phys Lett, 99, 181125(2011).

    [3] H Lin, R Chen, W S Lu, Y J Huo, T I Kamins et al. Investigation of the direct band gaps in Ge1-xSnx alloys with strain control by photoreflectance spectroscopy. Appl Phys Lett, 100, 102109(2012).

    [4] W J Yin, X G Gong, S H Wei. Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x alloys. Phys Rev B, 78, 161203(2008).

    [5] H P L de Guevara, A G Rodríguez, H Navarro-Contreras, M A Vidal. Structural and optical properties of Ge1-xSnx alloys grown on GaAs (001) by R. F. Magnetron Sputtering. ECS Trans, 64, 393-400(2004).

    [6] V R D'Costa, C S Cook, A G Birdwell, C L Littler, M Canonico et al. Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study. Phys Rev B, 73, 125207(2006).

    [7] R A Soref, C H Perry. Predicted band gap of the new semiconductor SiGeSn. J Appl Phys, 69, 539-541(1991).

    [8] G He, H A Atwater. Interband transitions in SnxGe1-x alloys. Phys Rev Lett, 79, 1937-1940(1997).

    [9] P Moontragoon, Z Ikonić, P Harrison. Band structure calculations of Si-Ge-Sn alloys: achieving direct band gap materials. Semicond Sci Technol, 22, 742-748(2007).

    [10] C Eckhardt, K Hummer, G Kresse. Indirect-to-direct gap transition in strained and unstrained SnxGe1-x alloys. Phys Rev B, 89, 165201(2014).

    [11] A Attiaoui, O Moutanabbir. Indirect-to-direct band gap transition in relaxed and strained Ge1-x-ySixSny ternary alloys. J Appl Phys, 116, 063712(2014).

    [12] S Wirths, Z Ikonic, A T Tiedemann, B Holl nder, T Stoica et al. Tensely strained GeSn alloys as optical gain media. Appl Phys Lett, 103, 192110(2013).

    [13] S Wirths, R Geiger, den Driesh N von, G Mussler, T Stoica et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photonics, 9, 88-92(2015).

    [14] R Soref, J Kouvetakis, J Tolle, J Menendez, V D'Costa. Advances in SiGeSn technology. J Mater Res, 22, 3281-3291(2007).

    [15] M R Bauer, J Taraci, J Tolle, A V G Chizmeshya, S Zollner et al. Ge-Sn semiconductors for band-gap and lattice engineering. Appl Phys Lett, 81, 2992-2994(2002).

    [16] J Kouvetakis, A V G Chizmeshya. New classes of Si-based photonic materials and device architectures via designer molecular routes. J Mater Chem, 17, 1649-1655(2007).

    [17] G Sun, R A Soref, H H Cheng. Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode. Opt Express, 18, 19957-19965(2010).

    [18] A Gassenq, F Gencarelli, Campenhout J Van, Y Shimura, R Loo et al. GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt Express, 20, 27297-27303(2012).

    [19] M Oehme, M Schmid, M Kaschel, M Gollhofer, D Widmann et al. GeSn p-i-n detectors integrated on Si with up to 4% Sn. Appl Phys Lett, 101, 141110(2012).

    [20] M Oehme, K Kostecki, M Schmid, F Oliveira, E Kasper et al. Epitaxial growth of strained and unstrained GeSn alloys up to 25% Sn. Thin Solid Films, 557, 169-172(2014).

    [21] N Taoka, G Capellini, den Driesch N von, D Buca, P Zaumseil et al. Sn migration control at high temperature due to high deposition speed for forming high-quality GeSn layer. Appl Phys Express, 9, 031201(2016).

    [22] H Li, C Chang, T P Chen, H H Cheng, Z W Shi et al. Characteristics of Sn segregation in Ge/GeSn heterostructures. Appl Phys Lett, 105, 151906(2014).

    [23] W Wang, L Z Li, Q Zhou, J S Pan, Z Zhang et al. Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1-xSnx layer on Ge (001) substrate. Appl Surf Sci, 321, 240-244(2014).

    [24] W Wang, Y Dong, Q Zhou, E S Tok, Y C Yeo. Germanium-tin interdiffusion in strained Ge/GeSn multiple-quantum-well structure. J Phys D Appl Phys, 49, 225102(2016).

    [25] S Gupta, B Magyari-K pe, Y Nishi, K C Saraswat. Achieving direct band gap in germanium through integration of Sn alloying and external strain. J Appl Phys, 113, 073707(2013).

    [26] Q F Zhang, Y Liu, J Yan, C F Zhang, Y Hao et al. Theoretical investigation of tensile strained GeSn waveguide with Si3N4 liner stressor for mid-infrared detector and modulator applications. Opt Express, 23, 7924-7932(2015).

    [27] T Fujisawa, K Saitoh. Material gain analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based light sources based on many-body theory. IEEE J Quantum Electron, 51, 7100108(2015).

    [28] Y H Zhu, Q Xu, W J Fan, J W Wang. Theoretical gain of strained GeSn0.02/Ge1-x-y' SixSny' quantum well laser. J Appl Phys, 107, 073108(2010).

    [29] Q F Zhang, Y Liu, J Yan, C F Zhang, Y Hao et al. Simulation investigation of tensile strained GeSn fin photodetector with Si3N4 liner stressor for extension of absorption wavelength. Opt Express, 23, 739-746(2015).

    [30] G Capellini, C Reich, S Guha, Y Yamamoto, M Lisker et al. Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process. Opt Express, 22, 399-410(2014).

    [31] C S Fenrich, X C Chen, R Chen, Y C Huang, H Chung et al. Strained pseudomorphic Ge1-xSnx multiple quantum well microdisk using SiNy stressor layer. ACS Photonics, 3, 2231-2236(2016).

    [32] Kurdi M El, M Prost, A Ghrib, S Sauvage, X Checoury et al. Direct band gap germanium microdisks obtained with silicon nitride stressor layers. ACS Photonics, 3, 443-448(2016).

    [33] Q F Zhang, Y Liu, C F Zhang, Q Z Huang, Y Hao et al. Tensile-strained mid-infrared GeSn detectors wrapped in Si3N4 liner stressor: theoretical investigation of impact of device architectures. IEEE Photonics J, 7, 6803208(2015).

    [34] P K Basu. Theory of Optical Processes in Semiconductors: Bulk and Microstructures (Oxford, UK: Clarendon, 1997)..

    [35] E D Palik. Handbook of Optical Constants of Solids (San Diego: Academic, 1998)..

    [36] Y Liu, C Z Fang, X Gao, G Q Han, Q F Zhang et al. Theoretical investigation of tensile-strained GeSn/SiGeSn multiple quantum well laser wrapped in Si3N4 liner stressor. IEEE Photonics J, 10, 1500609(2018).

    [37] Q F Zhang, Y Liu, G Q Han, Y Shao, X Gao et al. Theoretical analysis of performance enhancement in GeSn/SiGeSn light-emitting diode enabled by Si3N4 liner stressor technique. Appl Opt, 55, 9668-9674(2016).

    [38] S Al-Kabi, S A Ghetmiri, J Margetis, T Pham, Y Y Zhou et al. Optically pumped Si-based edge-emitting GeSn laser. In Proceedings of Conference on Lasers and Electro-Optics SW4C. 1 (OSA, 2017). http://doi.org/10.1364/CLEO_SI.2017.SW4C.1

    [39] D Stange, Driesch N von den, J Margetis, T Pham, Y Y Zhou et al. Optically pumped Si-based edge-emitting GeSn laser. In Proceedings of Conference on Lasers and Electro-Optics SW4C. 1 (OSA, 2017). http://doi.org/10.1364/CLEO_SI.2017.SW4C.1

    [40] J Margetis, S Al-Kabi, W Du, W Dou, Y Y Zhou et al. Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K. ACS Photonics, 5, 827-833(2018).

    [41] R W Millar, D C S Dumas, K F Gallacher, P Jahandar, C MacGregor et al. Mid-infrared light emission > 3 µm wavelength from tensile strained GeSn microdisks. Opt Express, 25, 25374-25385(2017).

    [42] D Stange, den Driesch N von, D Rainko, S Roesgaard, I Povstugar et al. Short-wave infrared LEDs from GeSn/SiGeSn multiple quantum wells. Optica, 4, 185-188(2017).

    [43] R W Millar, C S Dumas D, K Gallacher, P Jahandar, M Myronov et al. Tensile strained GeSn mid-infrared light emitters. In Proceedings of the 14th International Conference on Group Ⅳ Photonics 49–50 (IEEE, 2017). http://doi.org/10.1109/GROUP4.2017.8082190

    [44] S A Ghetmiri, W Du, J Margetis, A Mosleh, L Cousar et al. Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence. Appl Phys Lett, 105, 151109(2014).

    [45] C H Tsai, G E Chang. GeSn/Ge quantum well photodetectors for short-wave infrared photodetection: experiments and modeling. Proc SPIE 10231, 10231, 102310J(1023).

    [46] B J Huang, J H Lin, H H Cheng, G E Chang. GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms. Opt Lett, 43, 1215-1218(2018).

    [47] P C Grant, W Dou, B Alharthi, J M Grant, A Mosleh et al. Comparison study of the low temperature growth of dilute GeSn and Ge. Jf Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom, 35, 061204(2017).

    [48] N L Chen, G Y Lin, L Zhang, C Li, S Y Chen et al. Low-temperature formation of GeSn nanocrystallite thin films by sputtering Ge on self-assembled Sn nanodots on SiO2/Si substrate. Jpn J Appl Phys, 56, 050301(2017).

    [49] K R Khiangte, J S Rathore, J Schmidt, H J Osten, A Laha et al. Wafer-scale all-epitaxial GeSn-on-insulator on Si(111) by molecular beam epitaxy.. https://arxiv.org/pdf/1802.03150

    Cizhe Fang, Yan Liu, Qingfang Zhang, Genquan Han, Xi Gao, Yao Shao, Jincheng Zhang, Yue Hao. Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra[J]. Opto-Electronic Advances, 2018, 1(3): 180004
    Download Citation