• Journal of Semiconductors
  • Vol. 41, Issue 6, 062303 (2020)
Jiajing Yin1、2, Yurun Sun1, Shuzhen Yu1, Yongming Zhao1, Rongwei Li1, and Jianrong Dong1
Author Affiliations
  • 1Key Laboratory of Nano Devices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • 2Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.1088/1674-4926/41/6/062303 Cite this Article
    Jiajing Yin, Yurun Sun, Shuzhen Yu, Yongming Zhao, Rongwei Li, Jianrong Dong. 1064 nm InGaAsP multi-junction laser power converters[J]. Journal of Semiconductors, 2020, 41(6): 062303 Copy Citation Text show less
    References

    [1]

    [2] E Oliva, F Dimroth, A W Bett. GaAs converters for high power densities of laserillumination. Prog Photovolt: Res Appl, 16, 289(2008).

    [3] V Andreev, V Khvostikov, V Kalinovsky et al. High current density GaAs and GaSb photovoltaic cells for laser power beaming. IEEE World Conference on Photovoltaic Energy Conversion, 761(2003).

    [4] S Fafard, F Proulx, M C A York et al. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%. Appl Phys Lett, 109, 131107(2016).

    [5]

    [6] C E Valdivia, M M Wilkins, B Bouzazi et al. Five-volt vertically-stacked, single-cell GaAs photonic power converter. Physics, Simulation, Photonic Eng Photovolt Devices IV, 9358, 93580E(2015).

    [7] S Safard, M C A York, F Proulx et al. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Appl Phys Lett, 108, 071101(2016).

    [8] M A Green, J Zhao, A Wang et al. 45 % efficient silicon photovoltaic cell under monochromatic light. IEEE Electron Device Lett, 13, 317(1992).

    [9] V P Khvostikov, S V Sorokina, N S Potapovich et al. GaInAsP/InP-based laser power converters (λ = 1064 nm). Semiconductors, 52, 1748(2018).

    [10] N Singh, C K F Ho, Y N Leong et al. InAlGaAs/InP-based laser photovoltaic converter at ~1070 nm. IEEE Electron Device Lett, 37, 1154(2016).

    [11] S A Mintairov, V M Emelyanov, D V Rybalchenko et al. Heterostructures of metamorphic GaInAs photovoltaic converters fabricated by MOCVD on GaAs substrates. Semiconductors, 50, 517(2016).

    [12] D V Rybalchenko, S A Mintairov, R A Salii et al. Metamorphic InGaAs photo-converters on GaAs substrates. J Phys: Conf Ser, 690, 012032(2016).

    [13] D V Rybalchenko, S A Mintairov, R A Salii et al. Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD. Semiconductors, 51, 93(2017).

    [14] N A Kaluzhnyy, S A Mintaiov, A M Nadtochiy et al. InGaAs metamorphic laser (1064 nm) power converters with over 40% efficiency. Electron Lett, 53, 173(2017).

    [15] Y Kim, H B Shin, W H Lee et al. 1080 nm InGaAs laser power converters grown by MOCVD using InAlGaAs metamorphic buffer layers. Sol Energy Mater Sol Cells, 200, 109984(2019).

    [16] R Peña, C Algora. One-watt fiber-based power-by-light system for satellite applications. Prog Photovolt: Res Appl, 20, 117(2012).

    [17] R Pena, C Algora. The influence of monolithic series connection on the efficiency of GaAs photovoltaic converters for monochromatic illumination. IEEE Trans Electron Devices, 48, 196(2001).

    [18] C G Guan, W Liu, Q Gao. Influence of the mesa electrode position on monolithic on-chip series-interconnect GaAs laser power converter performance. Mater Sci Semicond Process, 75, 136(2018).

    [19] J Schubert, E Oliva, F Dimroth. High-voltage GaAs photovoltaic laser power converters. IEEE Trans Electron Devices, 56, 170(2009).

    [20] D Masson, F Proulx, S Fafard. Pushing the limits of concentrated photovoltaic solar cell tunnel junctions in novel high-efficiency GaAs phototransducers based on a vertical epitaxial heterostructure architecture. Prog Photovolts: Res Appl, 239, 1687(2015).

    [21] M C A York, F Proulx, D P Masson et al. Thin n/p GaAs junctions for novel high-efficiency phototransducers based on a vertical epitaxial heterostructure architecture. MRS Adv, 1, 881(2016).

    [22] S Fafard, F Proulx, M C A York et al. Advances with vertical epitaxial heterostructure architecture (VEHSA) phototransducers for optical to electrical power conversion efficiencies exceeding 50 percent. Physics Simulation Photonic Eng Photovolt Devices V, 9743, 974304(2016).

    [23] F Proulx, M C A York, P O Provost et al. Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architectures with conversion efficiencies exceeding 60%. Phys Status Solidi-Rapid Res Lett, 11, 1600385(2017).

    [24] H Burkhard, H W Dinges, E Kuphal. Optical properties of In1–xGaxP1–yAsy, InP, GaAs, and GaP determined by ellipsometry. J Appl Phys, 53, 655(1982).

    Jiajing Yin, Yurun Sun, Shuzhen Yu, Yongming Zhao, Rongwei Li, Jianrong Dong. 1064 nm InGaAsP multi-junction laser power converters[J]. Journal of Semiconductors, 2020, 41(6): 062303
    Download Citation