• Laser & Optoelectronics Progress
  • Vol. 56, Issue 22, 221202 (2019)
Jianyang Feng, Haiyun Chen*, Chu Shi, Gaoming Liu, and Xiang Yan
Author Affiliations
  • School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • show less
    DOI: 10.3788/LOP56.221202 Cite this Article Set citation alerts
    Jianyang Feng, Haiyun Chen, Chu Shi, Gaoming Liu, Xiang Yan. Three-Dimensional Measurement of Highly-Reflective Surface Using Structured Light Technique[J]. Laser & Optoelectronics Progress, 2019, 56(22): 221202 Copy Citation Text show less
    References

    [1] Salvi J, Fernandez S, Pribanic T et al. A state of the art in structured light patterns for surface profilometry[J]. Pattern Recognition, 43, 2666-2680(2010). http://www.sciencedirect.com/science/article/pii/S003132031000124X

    [2] Song Z, Chung R, Zhang X T. An accurate and robust strip-edgebased structured light means for shiny surface micro-measurement in 3D[J]. IEEE Transactions on Industrial Electronics, 60, 1023-1032(2013). http://ieeexplore.ieee.org/document/6157617/

    [3] Gupta M, Agrawal A, Veeraraghavan A et al. Structured light 3D scanning in the presence of global illumination. [C]∥CVPR 2011, June 20-25,2011, Colorado Springs, CO, USA. New York: IEEE, 713-720(2011).

    [4] Gupta M, Nayar S K. Micro phase shifting. [C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 813-819(2012).

    [5] Tang S M, Zhang X, Tu D W. Micro-phase measuring profilometry: its sensitivity analysis and phase unwrapping[J]. Optics and Lasers in Engineering, 72, 47-57(2015). http://www.sciencedirect.com/science/article/pii/S0143816615000664

    [6] Wang M M, Du G L, Zhou C L et al. Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm[J]. Optics Communications, 385, 43-53(2017). http://arxiv.org/abs/1606.02288

    [7] Zhang S, Yau S T. High dynamic range scanning technique[J]. Optical Engineering, 48, 033604(2009). http://spie.org/Publications/Proceedings/Paper/10.1117/12.791265

    [8] Jiang H Z, Zhao H J, Li X D. High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces[J]. Optics and Lasers in Engineering, 50, 1484-1493(2012). http://www.sciencedirect.com/science/article/pii/S0143816612000978

    [9] Song Z, Jiang H L, Lin H B et al. A high dynamic range structured light means for the 3D measurement of specular surface[J]. Optics and Lasers in Engineering, 95, 8-16(2017). http://www.sciencedirect.com/science/article/pii/S0143816617303287

    [10] Ekstrand L, Zhang S. Autoexposure for three-dimensional shape measurement using a digital-light-processing projector[J]. Optical Engineering, 50, 123603(2011). http://spie.org/Publications/Journal/10.1117/1.3662387

    [11] Rao L, Da F P. High dynamic range 3D shape determination based on automatic exposure selection[J]. Journal of Visual Communication and Image Representation, 50, 217-226(2018).

    [12] Suresh V, Wang Y J, Li B W. High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device[J]. Optics and Lasers in Engineering, 107, 176-181(2018). http://www.sciencedirect.com/science/article/pii/S0143816618301210

    [13] Zhao H J, Liang X Y, Diao X C et al. Rapid in situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector[J]. Optics and Lasers in Engineering, 54, 170-174(2014). http://www.sciencedirect.com/science/article/pii/S0143816613002455

    [14] Ri S E, Fujigaki M, Morimoto Y. Intensity range extension method for three-dimensional shape measurement in phase-measuring profilometry using a digital micromirror device camera[J]. Applied Optics, 47, 5400-5407(2008). http://www.ncbi.nlm.nih.gov/pubmed/18846182

    [15] Waddington C, Kofman J. Saturation avoidance by adaptive fringe projection in phase-shifting 3D surface-shape measurement. [C]∥2010 International Symposium on Optomechatronic Technologies, October 25-27, 2010, Toronto, ON, Canada. New York: IEEE, 11747004(2010).

    [16] Zhang C, Xu J, Xi N et al. A robust surface coding method for optically challenging objects using structured light[J]. IEEE Transactions on Automation Science and Engineering, 11, 775-788(2014). http://ieeexplore.ieee.org/document/6702494/

    [17] Lin H, Gao J, Mei Q et al. Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment[J]. Optics and Lasers in Engineering, 91, 206-215(2017). http://www.sciencedirect.com/science/article/pii/S0143816616304535

    [18] Babaie G, Abolbashari M, Farahi F. Dynamics range enhancement in digital fringe projection technique[J]. Precision Engineering, 39, 243-251(2015). http://www.sciencedirect.com/science/article/pii/S0141635914001032

    [19] Chen C, Gao N, Wang X J et al. Adaptive pixel-to-pixel projection intensity adjustment for measuring a shiny surface using orthogonal color fringe pattern projection[J]. Measurement Science and Technology, 29, 055203(2018). http://adsabs.harvard.edu/abs/2018MeScT..29e5203C

    [20] Li S X, Da F P, Rao L. Adaptive fringe projection technique for high-dynamic range three-dimensional shape measurement using binary search[J]. Optical Engineering, 56, 094111(2017). http://spie.org/Publications/Journal/10.1117/1.OE.56.9.094111

    [21] Chen S L, Xia R B, Zhao J B et al. Analysis and reduction of phase errors caused by nonuniform surface reflectivity in a phase-shifting measurement system[J]. Optical Engineering, 56, 033102(2017). http://spie.org/Publications/Journal/10.1117/1.OE.56.3.033102

    [22] Chen C, Gao N, Wang X J et al. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement[J]. Optics Communications, 410, 694-702(2018). http://adsabs.harvard.edu/abs/2018OptCo.410..694C

    [23] Salahieh B, Chen Z Y, Rodriguez J J et al. Multi-polarization fringe projection imaging for high dynamic range objects[J]. Optics Express, 22, 10064-10071(2014). http://europepmc.org/abstract/med/24787887

    [24] Jeong J, Hong D, Cho H. Measurement of partially specular objects by controlling imaging range[J]. Proceedings of SPIE, 6718, 671808(2007).

    [25] Jeong J, Kim M Y. Adaptive imaging system with spatial light modulator for robust shape measurement of partially specular objects[J]. Optics Express, 18, 27787-27801(2010).

    [26] Nayar S K, Mitsunaga T. High dynamic range imaging: spatially varying pixel exposures. [C]∥Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), June 15-15, 2000,Hilton Head Island, SC, USA. New York: IEEE, 6651672(2000).

    [27] Yang Z D, Wang P, Li X H et al. 3D laser scanner system using high dynamic range imaging[J]. Optics and Lasers in Engineering, 54, 31-41(2014). http://www.sciencedirect.com/science/article/pii/S0143816613002790

    [28] Nayar S K, Gupta M. Diffuse structured light. [C]∥2012 IEEE International Conference on Computational Photography (ICCP), April 28-29, 2012, Seattle,WA, USA. New York: IEEE, 12804039(2012).

    [29] Debevec P E, Malik J. Recovering high dynamic range radiance maps from photographs. [C]∥Proceedings of the 24th annual conference on Computer graphics and interactive techniques-SIGGRAPH '97, August 3-8, 1997. New York: Association for Computing Machinery(1997).

    [30] Ziou D, Tabbone S. Edge detection techniques-an overview[J]. Pattern Recognition and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii, 8, 537-559(1998).

    [31] Bergmann D. New approach for automatic surface reconstruction with coded light[J]. Proceedings of SPIE, 2572, 2-9(1995). http://spie.org/x648.html?product_id=216931

    [32] Zhang X, Zhu L M, Chu L W. Evaluation of coded structured light methods using ground truth. [C]∥2011 IEEE 5th International Conference on Cybernetics and Intelligent Systems (CIS), September 17-19, 2011, Qingdao, China. New York: IEEE, 117-123(2011).

    Jianyang Feng, Haiyun Chen, Chu Shi, Gaoming Liu, Xiang Yan. Three-Dimensional Measurement of Highly-Reflective Surface Using Structured Light Technique[J]. Laser & Optoelectronics Progress, 2019, 56(22): 221202
    Download Citation