• Matter and Radiation at Extremes
  • Vol. 7, Issue 6, 064401 (2022)
A. A. Ovechkin1、a), P. A. Loboda1、2, A. S. Korolev1, S. V. Kolchugin1, I. Yu. Vichev3, A. D. Solomyannaya3, D. A. Kim2、3, and A. S. Grushin3
Author Affiliations
  • 1Russian Federal Nuclear Center, Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), Chelyabinsk Region, Snezhinsk, Russia
  • 2Moscow Engineering Physics Institute (MEPhI), National Research Nuclear University, Moscow, Russia
  • 3Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
  • show less
    DOI: 10.1063/5.0098814 Cite this Article
    A. A. Ovechkin, P. A. Loboda, A. S. Korolev, S. V. Kolchugin, I. Yu. Vichev, A. D. Solomyannaya, D. A. Kim, A. S. Grushin. Ionization balance of non-LTE plasmas from an average-atom collisional-radiative model[J]. Matter and Radiation at Extremes, 2022, 7(6): 064401 Copy Citation Text show less
    References

    [1] C.Bauche-Arnoult, O.Peyrusse, J.Bauche. Atomic Properties in Hot Plasmas: From Levels to Superconfigurations(2015).

    [2] A.Zigler, J.Oreg, W. H.Goldstein, A.Bar-Shalom, D.Shvarts. Super-transition arrays: A model for the spectral analysis of hot, dense plasma. Phys. Rev. A, 40, 3183-3193(1989).

    [3] J.Oreg, A.Bar-Shalom, M.Klapisch. Collisional radiative model for heavy atoms in hot non-local-thermodynamical-equilibrium plasmas. Phys. Rev. E, 56, R70-R73(1997).

    [4] M.Klapisch, J.Oreg, A.Bar-Shalom. Non-LTE superconfiguration collisional radiative model. J. Quant. Spectrosc. Radiat. Transfer, 58, 427-439(1997).

    [5] M.Klapisch, A.Bar-Shalom, J.Oreg. Recent developments in the SCROLL model. J. Quant. Spectrosc. Radiat. Transfer, 65, 43-55(2000).

    [6] O.Peyrusse. A superconfiguration model for broadband spectroscopy of non-LTE plasmas. J. Phys. B: At. Mol. Opt. Phys., 33, 4303-4321(2000).

    [7] M.Busquet. Radiation-dependent ionization model for laser-created plasmas. Phys. Fluids B, 5, 4191-4206(1993).

    [8] C.Bowen. NLTE emissivities via an ionisation temperature. J. Quant. Spectrosc. Radiat. Transfer, 71, 201-214(2001).

    [9] C.Bowen, P.Kaiser. Dielectronic recombination in Au ionisation temperature calculations. J. Quant. Spectrosc. Radiat. Transfer, 81, 85-95(2003).

    [10] D.Fyfe, J.Gardner, M.Klapisch, M.Busquet, D.Colombant. Improvements to the RADIOM non-LTE model. High Energy Density Phys., 5, 270-275(2009).

    [11] R. M.More. Electronic energy levels in dense plasmas. J. Quant. Spectrosc. Radiat. Transfer, 27, 345-357(1982).

    [12] P.Dallot, A.Mirone, G.Faussurier, A.Decoster. Average-ion level-population correlations in off-equilibrium plasmas. Phys. Rev. E, 57, 1017-1028(1998).

    [13] C.Blancard, E.Berthier, G.Faussurier. Nonlocal thermodynamic equilibrium self-consistent average-atom model for plasma physics. Phys. Rev. E, 63, 026401(2001).

    [14] G.Faussurier, A.Decoster, C.Blancard. New screening coefficients for the hydrogenic ion model including l-splitting for fast calculations of atomic structure in plasmas. J. Quant. Spectrosc. Radiat. Transfer, 58, 233-260(1997).

    [15] S. B.Hansen, H. A.Scott. Advances in NLTE modeling for integrated simulations. High Energy Density Phys., 6, 39-47(2010).

    [16] B. F.Rozsnyai. Collisional-radiative average-atom model for hot plasmas. Phys. Rev. E, 55, 7507-7521(1997).

    [17] B. F.Rozsnyai. Hot plasma opacities in the presence or absence of local thermodynamic equilibrium. High Energy Density Phys., 6, 345-355(2010).

    [18] V. G.Novikov, V. B.Uvarov, A. F.Nikiforov. Quantum-statistical models of hot dense matter. Methods for Computation Opacity and Equation of State(2005).

    [19] A. D.Solomyannaya, V. G.Novikov, P. A.Loboda, A. A.Ovechkin, A. S.Grushin. RESEOS—A model of thermodynamic and optical properties of hot and warm dense matter. High Energy Density Phys., 13, 20-33(2014).

    [20] A. L.Falkov, A. A.Ovechkin, P. A.Loboda. Transport and dielectric properties of dense ionized matter from the average-atom RESEOS model. High Energy Density Phys., 20, 38-54(2016).

    [21] D. A.Liberman. Self-consistent field model for condensed matter. Phys. Rev. B, 20, 4981-4989(1979).

    [22] T.Blenski, R.Piron. Variational-average-atom-in-quantum-plasmas (VAAQP) code and virial theorem: Equation-of-state and shock-Hugoniot calculations for warm dense Al, Fe, Cu, and Pb. Phys. Rev. E, 83, 026403(2011).

    [23] W. H.Goldstein, A.Bar-Shalom, J.Oreg. Effect of configuration widths on the spectra of local thermodynamic equilibrium plasmas. Phys. Rev. E, 51, 4882-4890(1995).

    [24] V. G.Novikov, Y.Ralchenko. Average atom approximation in non-LTE level kinetics. Modern Methods in Collisional-Radiative Modeling of Plasmas, 105-126(2016).

    [25] I. Y.Vichev, D. A.Kim, A. D.Solomyannaya, A. S.Grushin. On certain aspects of the THERMOS toolkit for modeling experiments. High Energy Density Phys., 33, 100713(2019).

    [26] R. F.Heeter, D. H.Froula, A. J.Mackinnon, K. B.Fournier, M. B.Schneider, S. B.Hansen, M. J.May, B. K. F.Young, M. E.Foord. Benchmark measurements of the ionization balance of non-local thermodynamic equilibrium gold plasmas. Phys. Rev. Lett., 99, 195001(2007).

    [27] S. H.Glenzer, J. R.Albritton, R. S.Thoe, K. L.Wong, P. T.Springer, M. E.Foord, K. B.Fournier, B. G.Wilson. Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma. J. Quant. Spectrosc. Radiat. Transfer, 65, 231-241(2000).

    [28] H.van Regemorter. Rate of collisional excitation in stellar atmospheres. Astrophys. J., 136, 906-915(1962).

    [29] R. D.Cowan. The Theory of Atomic Structure and Spectra(1981).

    [30] P. C.Kepple, H. R.Griem, M.Blaha. Stark-profile calculations for Lyman-series lines of one-electron ions in dense plasmas. Phys. Rev. A, 19, 2421-2432(1979).

    [31] Using the relation l∼2meε/q, valid at high free-electron energies, one can rewrite the restriction q ≳ ℏ/d in a more evident form: ρ ≲ d, where ϱ≃ℏl/2meε is the classical impact parameter.

    [32] W.Lotz. Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions. Astrophys. J. Suppl., 14, 207(1967).

    [33] C.Blancard, G.Faussurier. Degeneracy and relativistic microreversibility relations for collisional-radiative equilibrium models. Phys. Rev. E, 95, 063201(2017).

    [34] I.Sobelman. Introduction to the Theory of Atomic Spectra(1972).

    [35] In the present work, we do not allow for the change of the m-subshell occupation number brought about by two-electron transitions like (j → c, m → i) and (i → c, j → m) as well as by their inverse counterparts.13 In general, the inclusion of these transitions would suggest the use of more accurate approximations to evaluate transition rates Ajimc than the dipole approximation employed in Eq. (23), e.g., the distorted-wave approximation.1 This is evidenced merely by the fact that Eq. (23) yields different values of the m → c, j → i (Ajimc) and j → c, m → i (Amijc) transition rates (so that one of these may even be equal to zero), although in the distorted-wave approximation these rates appear to be the same.

    [36] In practice, the occupation numbers in Eqs. (22) and (25) are updated only when one goes from one external iteration to another, i.e., variation of those in the internal iterations is not allowed.

    [37] V.Eyert. A comparative study on methods for convergence acceleration of iterative vector sequences. J. Comput. Phys., 124, 271-285(1996).

    [38] D. A.Liberman, B. I.Bennett. Atomic vibrations in a self-consistent-field atom-in-jellium model of condensed matter. Phys. Rev. B, 42, 2475-2484(1990).

    [39] T.Sjostrom, N. M.Gill, C. W.Greeff, C. E.Starrett. Wide ranging equation of state with tartarus: A hybrid Green’s function/orbital based average atom code. Comp. Phys. Commun., 235, 50-62(2019).

    [40] R.Karazija. The Theory of X-Ray and Electronic Spectra of Free Atoms: An Introduction(1987).

    [41] J.Dubau, G.Massacrier. A theoretical approach to N-electron ionic structure under dense plasma conditions: I. Blue and red shift. J. Phys. B: At. Mol. Opt. Phys., 23, 2459S-2469S(1990).

    [42] M. F.Gu. The flexible atomic code. Can. J. Phys., 86, 675-689(2008).

    [43] A basic configuration is built by successively filling subshells in order of increasing quantum numbers n, l, and j.

    [44] X.Li, F. B.Rosmej. Quantum-number-dependent energy level shifts of ions in dense plasmas: A generalized analytical approach. Europhys. Lett., 99, 33001(2012).

    [45] M.Poirier. A study of density effects in plasmas using analytical approximations for the self-consistent potential. High Energy Density Phys., 15, 12-21(2015).

    [46] V. A.Astapenko, V. S.Lisitsa, F. B.Rosmej, X.Li. An analytical plasma screening potential based on the self-consistent-field ion-sphere model. Phys. Plasmas, 26, 033301(2019).

    [47] C. A.Iglesias. On spectral line shifts from analytic fits to the ion-sphere model potential. High Energy Density Phys., 30, 41-44(2019).

    [48] J.-C.Pain. On the Li-Rosmej analytical formula for energy level shifts in dense plasmas. High Energy Density Phys., 31, 99-100(2019).

    [49] F. B.Rosmej, X.Li. Analytical approach to level delocalization and line shifts in finite temperature dense plasmas. Phys. Lett. A, 384, 126478(2020).

    [50] D.Benredjem, J.-C.Pain. Simple electron-impact excitation cross-sections including plasma density effects. High Energy Density Phys., 38, 100923(2019).

    [51] J. C.Stewart, K. D.Pyatt. Lowering of ionization potentials in plasmas. Astrophys. J., 144, 1203-1211(1966).

    [52] In fact, THERMOS calculates atomic-process rates using the differences of average configuration energies rather than one-electron transition energies as is done in RESEOS. This distinction, however, plays no significant role in the comparisons of the RESEOS and THERMOS results presented and is therefore omitted in the following discussion.

    [53] J. R.Albritton, B. G.Wilson. NLTE ionization and energy balance in high-Z laser-plasmas including two-electron transitions. J. Quant. Spectrosc. Radiat. Transfer, 65, 1-13(2000).

    [54] B.Wilson, G. V.Brown, K. B.Fournier, P.Springer, P. A.Neill, C. L.Harris, K. L.Wong, M. J.May, P.Beiersdorfer. Determination of the charge state distribution of a highly ionized coronal Au plasma. Phys. Rev. Lett., 90, 235001(2003).

    [55] S. B.Hansen, P.Beiersdorfer, J. H.Scofield, M. J.May. Atomic physics and ionization balance of high-Z ions: Critical ingredients for characterizing and understanding high-temperature plasmas. High Energy Density Phys., 8, 271-283(2012).

    [56] F.Gilleron, J.-C.Pain. Stable method for the calculation of partition functions in the superconfiguration approach. Phys. Rev. E, 69, 056117(2004).

    [57] R.Florido, R. W.Lee, Y.Ralchenko, C.Bowen, J. G.Rubiano. Review of the 4th NLTE code comparison workshop. High Energy Density Phys., 3, 225-232(2007).

    [58] P. A.Loboda, A. L.Falkov, A. A.Ovechkin, P. A.Sapozhnikov. Equation of state modeling with pseudoatom molecular dynamics. Phys. Rev. E, 103, 053206(2021).

    [59] N.Wetta, O.Heuzé, J.-C.Pain. D’yakov-Kontorovitch instability of shock waves in hot plasmas. Phys. Rev. E, 98, 033205(2018).

    A. A. Ovechkin, P. A. Loboda, A. S. Korolev, S. V. Kolchugin, I. Yu. Vichev, A. D. Solomyannaya, D. A. Kim, A. S. Grushin. Ionization balance of non-LTE plasmas from an average-atom collisional-radiative model[J]. Matter and Radiation at Extremes, 2022, 7(6): 064401
    Download Citation