• Matter and Radiation at Extremes
  • Vol. 7, Issue 6, 064401 (2022)
A. A. Ovechkin1、a), P. A. Loboda1、2, A. S. Korolev1, S. V. Kolchugin1, I. Yu. Vichev3, A. D. Solomyannaya3, D. A. Kim2、3, and A. S. Grushin3
Author Affiliations
  • 1Russian Federal Nuclear Center, Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), Chelyabinsk Region, Snezhinsk, Russia
  • 2Moscow Engineering Physics Institute (MEPhI), National Research Nuclear University, Moscow, Russia
  • 3Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
  • show less
    DOI: 10.1063/5.0098814 Cite this Article
    A. A. Ovechkin, P. A. Loboda, A. S. Korolev, S. V. Kolchugin, I. Yu. Vichev, A. D. Solomyannaya, D. A. Kim, A. S. Grushin. Ionization balance of non-LTE plasmas from an average-atom collisional-radiative model[J]. Matter and Radiation at Extremes, 2022, 7(6): 064401 Copy Citation Text show less

    Abstract

    We present a simplified version of an average-atom collisional-radiative model employing both local-thermodynamic-equilibrium average-atom and isolated-ion atomic data. The simplifications introduced do not lead to any substantial errors, and they significantly speed up calculations compared with the basic average-atom model involving direct solution of the self-consistent-field equations. Average ion charges, charge state distributions, and emission spectra of non-local-thermodynamic-equilibrium (NLTE) gold plasmas calculated using various modifications of the average-atom collisional-radiative model are compared with those obtained using the THERMOS model with the detailed configuration accounting approach. We also propose an efficient method to calculate thermodynamic functions of NLTE plasmas in the context of the simplified average-atom collisional-radiative model.
    NmLm+(gmNm)Sm=0,

    View in Article

    Lm=kRmk(c)+Rmk(r)(1Nk/gk)+Rmc(c)+Rmc(r)+Am,

    View in Article

    Sm=1gmkRkm(c)+Rkm(r)Nk+Rcm(c)+Rcm(r)+Dm,

    View in Article

    Rkm(c)=42πβe4Z0ni0fkmmeεkmΛ(βεkm),

    View in Article

    Λ(x)=exp(x)exp(x)E1(x)+πa3exp(x)ln1exp(γ)x+expπa3.

    View in Article

    Z0=ZmNm,

    View in Article

    qmin=2meε2me(εεkm)meεkm/2ε,qmax=2meε+2me(εεkm)22meε.

    View in Article

    d=max(r0,rDe),

    View in Article

    gmRmk(c)=gkeβεkmRkm(c).

    View in Article

    Rmc(c)=2K2πβe4Z0ni0πme|εm|E1maxβ|εm|,βmed,

    View in Article

    Rcm(c)=exp[β(μeεm)]Rmc(c),

    View in Article

    Rkm(r)=2e22mec3εkm2|fkm|[θ(εmk)+F(|εkm|)].

    View in Article

    F(ω)=14πf(ω,Ω)dΩ

    View in Article

    Rmc(r)=2e22mec3|εm|ω2fm(εm+ω)[1n(εm+ω)]F(ω)dω,

    View in Article

    Rcm(r)=exp[β(μeεm)]2e22mec3|εm|ω2fm(εm+ω)×[1n(εm+ω)]exp(βω)[1+F(ω)]dω,

    View in Article

    n(ε)=11+exp[β(εμe)].

    View in Article

    fm(ε)=me(εεm)32lc=lm±1,jc2jc+1jm+jc+1×δ|jmjc|,1+δ|jmjc|,02(2lm+1)(2lc+1)rm,εlcjc2,

    View in Article

    rm,εlcjc=0r[Pm(r)Pεlcjc(r)+Qm(r)Qεlcjc(r)]dr,

    View in Article

    fm(ε)=4me2e8Zm433π4nm5(εεm)3

    View in Article

    fm(ε)=82mee2Zmεm3/233πnm2(εεm)3.

    View in Article

    ZmZnm=Zn<nmσnmnGn12σnmnmGnm,

    View in Article

    Am=jiNj(giNi)Ajimcθ(εjεi+εm).

    View in Article

    Ajimc=3πεij2fij2gjZm2fm(ε)(1n(ε))|ε=εjεi+εm.

    View in Article

    V(r)Zme2r+const.

    View in Article

    Dm=ji(gjNj)NiAijcmθ(εjεi+εm),

    View in Article

    Aijcm=exp[β(μeεj+εiεm)]Ajimc.

    View in Article

    P(ε)=12πΔexp12εεΔ2.

    View in Article

    0P(ε)dε=121+erfεjεi+εm2Δ,

    View in Article

    Np(l)=αN̄p(l)+(1α)Np(l1).

    View in Article

    Ps(r)+ϰsrPs(r)=1c[εsV(r)+2mec2]Qs(r),

    View in Article

    Qs(r)ϰsrQs(r)=1c[εsV(r)]Ps(r),

    View in Article

    V(r)=[Vel(r)+Vxc(ne(r),β)Vxc(ne0,β)ν]θ(r0r),

    View in Article

    Vel(r)=Ze2r+4πe20r0(r)2ne(r)drr>,

    View in Article

    4πr2ne(r)=4πr2[ne(1)(r)+ne,f(r)]θ(r0r)+4πr2ne0θ(rr0),

    View in Article

    4πr2ne(1)(r)=sNs[Ps2(r)+Qs2(r)],

    View in Article

    ne,f(r)=2me3/2π23β3/2βV(r)ydy1+exp{y+β[V(r)μe]},

    View in Article

    ne0=ne,f(r>r0),

    View in Article

    ν=1ne(r0)ne0εxc(ne0,β)[ne(r0)ne0]Vxc(ne0,β)+ne(r0)εxc(ne(r0),β),

    View in Article

    4π0r0ne(r)r2dr=Z.

    View in Article

    Vxc(ne,β)=ne[neεxc(ne,)].

    View in Article

    εsws=(sν)ws+e2tNtFst(0)+ΔIs+Δεsxc,

    View in Article

    ws=0r0ρs(r)dr,withρs(r)=Ps2(r)+Qs2(r),

    View in Article

    ΔIs=4πe20r0ρs(r)dr0r0ne,f(r)(r)2r>dr,

    View in Article

    Δεsxc=0r0[Vxc(ne(r),β)Vxc(ne0,β)]ρs(r)dr,

    View in Article

    Fst(0)=0r0ρs(r)dr0r0ρt(r)r>dr,

    View in Article

    εs=εs(0)+e2tNtFst(0)+ΔIs,

    View in Article

    ΔIs=3Z0e22r01r2s3r02=3e22r0ZtNt1r2s3r02,

    View in Article

    r2s=0r0r2ρs(r)dr,

    View in Article

    r2s=4ns2[5ns2+13lsls+1]2me2e4Zs2.

    View in Article

    εsε̃s+e2t(NtÑt)F̃st(0)32r01r2̃s3r02,

    View in Article

    εs(l)=εs(l1)+e2tNt(l)Nt(l1)12Fst(0,l1)+Fst(0,l)32r0116r02r2s(l1)+r2s(l).

    View in Article

    r2s/(3r02)

    View in Article

    2me3/2π23β3/2ni0I1/2(βμe)=ZsNs,

    View in Article

    μe=μe+Δμe,

    View in Article

    Δμe=μ̃eμ̃e,

    View in Article

    2me3/2π23β3/2ni0I1/2(βμ̃e)=ZsÑs.

    View in Article

    Nm1,gmNm1.

    View in Article

    PC=sgsqsNsgsqs1Nsgsgsqs,

    View in Article

    PC=UCCUC,UC=sgsqsexp[βqs(μeεs)].

    View in Article

    Ns=gsn(ξs)ξs=TelnNsgsNs+μe.

    View in Article

    cQ=sqs=QPC

    View in Article

    Ee=Ek+Ep+ExcE0,

    View in Article

    Ek=Ek1+Ek2+Ek3,

    View in Article

    Ek1=sNsεsws,

    View in Article

    Ek2=4π0r0ne(1)(r)V(r)r2dr,

    View in Article

    Ek3=42me3/2π3β5/20r0r2drβV(r)y3/2dy1+exp{y+β[V(r)μe]},

    View in Article

    Ep=2π0r0Ze2rVel(r)ne(r)r2dr,

    View in Article

    Exc=4π0r0ne(r)εxc(ne(r))r2dr.

    View in Article

    Pe=Pb+Pf+Pxc(ne(r0)),

    View in Article

    Pb=c4πr02sNs[Qs(r0)Ps(r0)Ps(r0)Qs(r0)],

    View in Article

    Pf=22me3/23π23β5/2βV(r0)y3/2dy1+exp{y+β[V(r0)μe]},

    View in Article

    Pxc(ne)=ne2εxc(ne)ne.

    View in Article

    Ps2(r)+Qs2(r)δ(r),

    View in Article

    Ee=sNsεs3Z0e22r0e22s,tNsNtFst(0)9Z02e210r0+42me3/2r033π3β5/2I3/2(βμe)E0,

    View in Article

    Pe=22me3/23π23β5/2I3/2(βμe)+(ne0)2εxc(ne0)ne0.

    View in Article

    A. A. Ovechkin, P. A. Loboda, A. S. Korolev, S. V. Kolchugin, I. Yu. Vichev, A. D. Solomyannaya, D. A. Kim, A. S. Grushin. Ionization balance of non-LTE plasmas from an average-atom collisional-radiative model[J]. Matter and Radiation at Extremes, 2022, 7(6): 064401
    Download Citation