• Chinese Optics Letters
  • Vol. 20, Issue 1, 011404 (2022)
Jincheng Wei1, Peng Li1, Linpeng Yu1, Shuangchen Ruan1、2, Keyi Li1, Peiguang Yan1, Jiachen Wang1, Jinzhang Wang1, Chunyu Guo1、*, Wenjun Liu3, Ping Hua4, and Qitao Lü5
Author Affiliations
  • 1Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
  • 3State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 4Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO 17 1BJ, UK
  • 5Han’s Laser Technology Industry Group Co., Ltd., Shenzhen 518057, China
  • show less
    DOI: 10.3788/COL202220.011404 Cite this Article Set citation alerts
    Jincheng Wei, Peng Li, Linpeng Yu, Shuangchen Ruan, Keyi Li, Peiguang Yan, Jiachen Wang, Jinzhang Wang, Chunyu Guo, Wenjun Liu, Ping Hua, Qitao Lü. Mode-locked fiber laser of 3.5 µm using a single-walled carbon nanotube saturable absorber mirror[J]. Chinese Optics Letters, 2022, 20(1): 011404 Copy Citation Text show less
    References

    [1] B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso. Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy. Appl. Phys. Lett., 91, 231101(2007).

    [2] D. Halmer, S. Thelen, P. Hering, M. Murtz. Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer. Appl. Phys. B, 85, 437(2006).

    [3] C. Frayssinous, V. Fortin, J. P. Berube, A. Fraser, R. Vallee. Resonant polymer ablation using a compact 3.44 µm fiber laser. J. Mater. Process Tech., 252, 813(2018).

    [4] H. Nie, F. Wang, J. Liu, K. Yang, B. Zhang, J. He. Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review. Chin. Opt. Lett., 19, 091407(2021).

    [5] H. Gu, Z. Qin, G. Xie, T. Hai, P. Yuan, J. Ma, L. Qian. Generation of 131 fs mode-locked pulses from 2.8 µm Er:ZBLAN fiber laser. Chin. Opt. Lett., 18, 031402(2020).

    [6] A. Schliesser, N. Picqué, T. W. Hänsch. Mid-infrared frequency combs. Nat. Photonics, 6, 440(2012).

    [7] H. Uehara, D. Konishi, K. Goya, R. Sahara, M. Murakami, S. Tokita. Power scalable 30-W mid-infrared fluoride fiber amplifier. Opt. Lett., 44, 4777(2019).

    [8] J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, Y. Liu. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep., 6, 30361(2016).

    [9] P. H. Tang, Z. P. Qin, J. Liu, C. J. Zhao, G. Q. Xie, S. C. Wen, L. J. Qian. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm. Opt. Lett., 40, 4855(2015).

    [10] O. Henderson-Sapir, J. Munch, D. J. Ottaway. Mid-infrared fiber lasers at and beyond 3.5 µm using dual-wavelength pumping. Opt. Lett., 39, 493(2014).

    [11] A. Malouf, O. Henderson-Sapir, M. Gorjan, D. J. Ottaway. Numerical modeling of 3.5 µm dual-wavelength pumped erbium-doped mid-infrared fiber lasers. IEEE J. Quantum Electron., 52, 1600412(2016).

    [12] F. Maes, V. Fortin, M. Bernier, R. Vallee. 5.6 W monolithic fiber laser at 3.55 µm. Opt. Lett., 42, 2054(2017).

    [13] N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, D. J. Ottaway. Actively Q-switched dual-wavelength pumped Er3+:ZBLAN fiber laser at 3.47 µm. Opt. Lett., 43, 2724(2018).

    [14] F. Jobin, V. Fortin, F. Maes, M. Bernier, R. Vallee. Gain-switched fiber laser at 3.55 µm. Opt. Lett., 43, 1770(2018).

    [15] H. Y. Luo, J. Yang, F. Liu, Z. Hu, Y. Xu, F. Yan, H. L. Peng, F. Ouellette, J. F. Li, Y. Liu. Watt-level gain-switched fiber laser at 3.46 µm. Opt. Express, 27, 1367(2019).

    [16] O. Henderson-Sapir, N. Bawden, M. R. Majewski, R. I. Woodward, D. J. Ottaway, S. D. Jackson. Mode-locked and tunable fiber laser at the 3.5 µm band using frequency-shifted feedback. Opt. Lett., 45, 224(2020).

    [17] M. Zhang, H. Chen, J. Yin, J. Wang, J. Wang, P. Yan. Recent development of saturable absorbers for ultrafast lasers. Chin. Opt. Lett., 19, 081405(2021).

    [18] K. Wu, X. Zhang, J. Wang, X. Li, J. Chen. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt. Express, 23, 11453(2015).

    [19] D. Fan, C. Mou, X. Bai, S. Wang, N. Chen, X. Zeng. Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold-nanosphere based saturable absorber. Opt. Express, 22, 18537(2014).

    [20] X. Li, J. Peng, R. Liu, J. Liu, T. Feng, A. Qyyum, C. Gao, M. Xue, J. Zhang. Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser. Frontiers of Optoelectronics, 13, 149(2020).

    [21] J. Liu, X. Li, Y. Guo, A. Qyyum, Z. Shi, T. Feng, Y. Zhang, C. Jiang, X. Liu. Harmonic mode-locking: SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small, 15, 1902811(2019).

    [22] T. Feng, D. Zhang, X. Li, A. Qyyum, Z. Shi, J. Lu, P. Guo, Y. Zhang, J. Liu, Q. Wang. “SnS2 nanosheets for Er-doped fiber lasers. ACS Appl. Nano Mater., 3, 674(2020).

    [23] Y. Zhao, P. Guo, X. Li, Z. Jin. Ultrafast photonics application of graphdiyne in the optical communication region. Carbon, 149, 336(2019).

    [24] T. Chai, X. Li, T. Feng, P. Guo, Y. Song, Y. Chen, H. Zhang. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 10, 17617(2018).

    [25] Z. P. Qin, T. Hai, G. Q. Xie, J. G. Ma, P. Yuan, L. J. Qian, L. Li, L. M. Zhao, D. Y. Shen. Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 µm wavelength. Opt. Express, 26, 8224(2018).

    [26] G. Xie, Z. Qin. Mid-infrared ultrafast lasers based on two-dimension materials. Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)(2018).

    [27] R. E. Nahory, M. A. Pollack, W. D. Johnston, R. L. Barns. Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP. Appl. Phys. Lett., 33, 659(1978).

    [28] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba. Optical properties of single-wall carbon nanotubes. Synthetic Met., 103, 2555(1999).

    [29] A. Martinez, Z. P. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 7, 842(2013).

    [30] H. Chu, Y. Li, C. Wang, H. Zhang, D. Li. Recent investigations on nonlinear absorption properties of carbon nanotubes. Nanophotonics, 9, 761(2020).

    [31] L. Hou, H. Guo, Y. Wang, J. Sun, Q. Lin, Y. Bai, J. Bai. Sub-200 femtosecond dispersion-managed soliton ytterbium-doped fiber laser based on carbon nanotubes saturable absorber. Opt. Express, 26, 9063(2018).

    [32] H. Guo, L. Hou, Y. Wang, J. Sun, Q. Lin, Y. Bai, J. Bai. Tunable ytterbium-doped modelocked fiber laser based on single-walled carbon nanotubes. J. Lightwave Technol., 37, 2370(2019).

    [33] Y. Zhou, J. Lin, X. Zhang, L. Xu, C. Gu, B. Sun, A. Wang, Q. Zhan. Self-starting passively modelocked all fiber laser based on carbon nanotubes with radially polarized emission. Photon. Res., 4, 327(2016).

    [34] K. Y. Lau, P. J. Ker, A. F. Abas, M. T. Alresheedi, M. A. Mahdi. Mode-locked fiber laser in the C-band region for dual wavelength ultrashort pulses emission using a carbon nanotube saturable absorber. Chin. Opt. Lett., 17, 051401(2019).

    [35] S. Fu, X. Zhu, M. Tong, M. Mollaee, K. Wiersma, K. AlYahyaei, J. Zong, A. Chavez, N. Peyghambarian. Ho3+-doped all-fiber laser Q-switched by D-shaped fiber carbon-nanotube saturable absorber. IEEE Photon. Technol. Lett., 31, 1960(2019).

    [36] W. Chen, Y. Lyu, Q. Li, Z. Kang, H. Zhang, G. Qin, H. Li, Y. Liu. Wideband tunable, carbon nanotube mode-locked fiber laser emitting at wavelengths around 3 µm. IEEE Photon. Technol. Lett., 31, 869(2019).

    [37] C. Wei, Y. J. Lyu, H. X. Shi, Z. Kang, H. Zhang, G. S. Qin, Y. Liu. Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 µm based on carbon nanotube. IEEE J. Sel. Top. Quantum Electron., 25, 1100206(2019).

    [38] M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio. Raman spectroscopy of carbon nanotubes. Phys. Rep., 409, 47(2005).

    [39] R. Paschotta, U. Keller. Passive mode locking with slow saturable absorbers. Appl. Phys. B, 73, 653(2001).

    [40] M. L. Dennis, I. N. Duling. Exerimental study of sideband generation in femtosecond fiber laser. IEEE J. Quantum Electron., 30, 1469(1994).

    [41] U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. Aus der Au. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron., 2, 435(1996).

    Data from CrossRef

    [1] Xin Zhang, Cunzhu Tong, Kaidi Cai, Yanjing Wang. Pulse light manipulate output state of 3.6 μm fluoride fiber laser in DWP system. Japanese Journal of Applied Physics, 61, 082005(2022).

    Jincheng Wei, Peng Li, Linpeng Yu, Shuangchen Ruan, Keyi Li, Peiguang Yan, Jiachen Wang, Jinzhang Wang, Chunyu Guo, Wenjun Liu, Ping Hua, Qitao Lü. Mode-locked fiber laser of 3.5 µm using a single-walled carbon nanotube saturable absorber mirror[J]. Chinese Optics Letters, 2022, 20(1): 011404
    Download Citation