• Chinese Optics Letters
  • Vol. 20, Issue 1, 011404 (2022)
Jincheng Wei1, Peng Li1, Linpeng Yu1, Shuangchen Ruan1、2, Keyi Li1, Peiguang Yan1, Jiachen Wang1, Jinzhang Wang1, Chunyu Guo1、*, Wenjun Liu3, Ping Hua4, and Qitao Lü5
Author Affiliations
  • 1Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
  • 3State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 4Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO 17 1BJ, UK
  • 5Han’s Laser Technology Industry Group Co., Ltd., Shenzhen 518057, China
  • show less
    DOI: 10.3788/COL202220.011404 Cite this Article Set citation alerts
    Jincheng Wei, Peng Li, Linpeng Yu, Shuangchen Ruan, Keyi Li, Peiguang Yan, Jiachen Wang, Jinzhang Wang, Chunyu Guo, Wenjun Liu, Ping Hua, Qitao Lü. Mode-locked fiber laser of 3.5 µm using a single-walled carbon nanotube saturable absorber mirror[J]. Chinese Optics Letters, 2022, 20(1): 011404 Copy Citation Text show less
    (a) Prepared SWCNT-SAM. Inset: dispersion of SWCNT. (b) TEM image of SWCNT in coarse resolution. (c) TEM images of SWCNT in fine resolution. (d) Raman spectrum of SWCNT-SAM.
    Fig. 1. (a) Prepared SWCNT-SAM. Inset: dispersion of SWCNT. (b) TEM image of SWCNT in coarse resolution. (c) TEM images of SWCNT in fine resolution. (d) Raman spectrum of SWCNT-SAM.
    (a) Linear and (b) nonlinear reflection characteristics of SWCNT-SAM. (c) Schematic of the setup for characterizing saturable absorption.
    Fig. 2. (a) Linear and (b) nonlinear reflection characteristics of SWCNT-SAM. (c) Schematic of the setup for characterizing saturable absorption.
    Experimental setup of the 3.5 µm mode-locked fiber laser and the diagram showing the transition processes involved in the generation of the 3.5 µm radiation.
    Fig. 3. Experimental setup of the 3.5 µm mode-locked fiber laser and the diagram showing the transition processes involved in the generation of the 3.5 µm radiation.
    Characteristics of the 3.5 µm mode-locked pulses: (a) optical spectrum, inset: optical spectrum in linear format; (b) pulse train; (c) RF spectrum around the fundamental frequency, inset: RF spectrum in a 500 MHz span. (d) Damaged surface of SWCNT-SAM, inset: pulse train of the Q-switched pulses.
    Fig. 4. Characteristics of the 3.5 µm mode-locked pulses: (a) optical spectrum, inset: optical spectrum in linear format; (b) pulse train; (c) RF spectrum around the fundamental frequency, inset: RF spectrum in a 500 MHz span. (d) Damaged surface of SWCNT-SAM, inset: pulse train of the Q-switched pulses.
    Jincheng Wei, Peng Li, Linpeng Yu, Shuangchen Ruan, Keyi Li, Peiguang Yan, Jiachen Wang, Jinzhang Wang, Chunyu Guo, Wenjun Liu, Ping Hua, Qitao Lü. Mode-locked fiber laser of 3.5 µm using a single-walled carbon nanotube saturable absorber mirror[J]. Chinese Optics Letters, 2022, 20(1): 011404
    Download Citation