• Journal of Semiconductors
  • Vol. 40, Issue 10, 101301 (2019)
Giorgos Boras, Xuezhe Yu, and Huiyun Liu
Author Affiliations
  • Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE, United Kingdom
  • show less
    DOI: 10.1088/1674-4926/40/10/101301 Cite this Article
    Giorgos Boras, Xuezhe Yu, Huiyun Liu. III–V ternary nanowires on Si substrates: growth, characterization and device applications[J]. Journal of Semiconductors, 2019, 40(10): 101301 Copy Citation Text show less
    References

    [1] Q Y Tong, U Gösele. Semiconductor wafer bonding, science and technology. John Wiley & Sons, 204(1999).

    [2] S Palit, J Kirch, M Huang et al. Facet-embedded thin-film III–V edge-emitting lasers integrated with SU-8 waveguides on silicon. Opt Lett, 35, 3474(2010).

    [3] S Palit, J Kirch, G Tsvid et al. Low-threshold thin-film III–V lasers bonded to silicon with front and back side defined features. Opt Lett, 34, 2802(2009).

    [4] M V Bogdanov, K A Bulashevich, O V Khokhlev et al. Current crowding effect on light extraction efficiency of thin-film LEDs. Phys Stat Solidi C, 7, 2124(2010).

    [5] J J Jr Wierer, A David, M M Megens. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat Photonics, 3, 163(2009).

    [6] S Pouladi, M Rathi, D Khatiwada et al. High-efficiency flexible III–V photovoltaic solar cells based on single-crystal-like thin films directly grown on metallic tapes. Prog Photovolt Res Appl, 27, 30(2019).

    [7] K Tanabe. A review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional. photonic up/down conversion and plasmonic nanometallic structures. Energy, 2, 504(2009).

    [8] M Yokohama, T Yasuda, H Takagi et al. Thin body III–V semiconductor-on-insulator metal–oxide–semiconductor field-effect transistors on Si fabicated using direct wafer bonding. Appl Phys Express, 2, 124501(2009).

    [9] P D Ye. Main determinants for III–V metal–oxide–semiconductor field-effect transistors. J Vac Sci Technol A, 26, 697(2008).

    [10] V G Dubrovskii. Theory of VLS growth of compound semiconductors, semiconductors and semimetals. Chapter 1. Elsevier Inc, 93(2015).

    [11] Y B Bolkhovityanov, O P Pchelyakov. GaAs epitaxy on Si substrates: modern status of research and engineering. Phys Usp, 51, 437(2008).

    [12] T Wang, H Liu, A Lee et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 19, 11381(2011).

    [13] E Y Chang, T H Yang, G Luo et al. A GeSi-buffer structure for growth of high-quality GaAs epitaxial layers on a Si substrate. J Electron Mater, 34, 23(2005).

    [14] E A Fitzgerald, Y H Xie, M L Green et al. Totally relaxed GexSi1–x layers with low threading dislocation densities grown on Si substrates. Appl Phys Lett, 59, 811(1991).

    [15] V K Dixit, T Ganguli, T K Sharma et al. Studies on MOVPE growth of GaP epitaxial layer on Si (001) substrate and effects of annealing. J Cryst Growth, 293, 5(2006).

    [16] Y Komatsu, K Hosotani, T Fuyuki et al. Heteroepitaxial growth of InGaP on Si with InGaP/GaP step-graded buffer layers. Jpn J Appl Phys, 36, 5425(1997).

    [17] T Tsuji, H Yonezu, N Ohshima. Selective epitaxial growth of GaAs on Si with strained short-period superlattices by molecular beam epitaxy under atomic hydrogen irradiation. J Vac Sci Technol B, 22, 1428(2004).

    [18] U Gösele, Y Bluhm, G Kastner et al. Fundamental issues in wafer bonding. J Vac Sci Technol A, 17, 1145(1999).

    [19] T Mårtensson, C P T Svensson, B A Wacaser et al. Epitaxial III–V nanowires on silicon. Nano Lett, 4, 1987(2004).

    [20] J Treu, T Stettner, M Watzinger et al. Lattice-matched InGaAs−InAlAs core−shell nanowires with improved luminescence and photoresponse properties. Nano Lett, 15, 3533(2015).

    [21] J C Shin, A Lee, P K Mohseni et al. Wafer-scale production of uniform InAsyP1–y nanowire array on silicon for heterogeneous integration. ACS Nano, 7, 5463(2013).

    [22] J Wu, Y Li, J Kubota et al. Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core−shell nanowire photocathode on silicon substrates. Nano Lett, 14, 2013(2014).

    [23] D Saxena, N Jiang, X Yuan et al. Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers. Nano Lett, 16, 5080(2016).

    [24] T Stettner, P Zimmermann, B Loitsch et al. Coaxial GaAs–AlGaAs core-multishell nanowire lasers with epitaxial gain control. Appl Phys Lett, 108, 011108(2016).

    [25] K Tomioka, J Motohisa, S Hara et al. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett, 10, 1639(2010).

    [26] C P T Svensson, T Mårtensson, J Trägårdh et al. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology, 19, 305201(2008).

    [27] J Huh, D C Kim, A M Munshi et al. Low frequency noise in single GaAsSb nanowires with self-induced compositional gradients. Nanotechnology, 27, 385703(2016).

    [28] M Sharma, E Ahmad, D Dev et al. Improved performance of GaAsSb/AlGaAs nanowire ensemble Schottky barrier based photodetector via in situ annealing. Nanotechnology, 30, 034005(2019).

    [29] D Ren, D L Dheeraj, C Jin et al. New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays. Nano Lett, 16, 1201(2016).

    [30] M J L Sourribes, I Isakov, M Panfilova et al. Mobility enhancement by sb-mediated minimisation of stacking fault density in InAs nanowires grown on silicon. Nano Lett, 14, 1643(2014).

    [31] K Tomioka, M Yoshimura, T Fukui. A III–V nanowire channel on silicon for high-performance vertical transistors. Nature, 488, 189(2012).

    [32] J J Hou, N Han, F Wang et al. Synthesis and characterizations of ternary ingaas nanowires by a two-step growth method for high-performance electronic devices. ACS Nano, 6, 3624(2012).

    [33] A Bengoechea-Encabo, F Barbagini, S Fernandez-Garrido et al. Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks. J Cryst Growth, 325, 89(2011).

    [34] X Ji, X Yang, W Du et al. Selective-area MOCVD growth and carrier-transport-type control of InAs(Sb)/GaSb core–shell nanowires. Nano Lett, 16, 7580(2016).

    [35] K Tomioka. Selective-area growth of III–V nanowires and their applications. J Mater Res, 26, 2127(2011).

    [36] K Tomioka, T Tanaka, S Hara et al. III–V nanowires on Si substrate: selective-area growth and device applications. IEEE J Sel Top Quantum Electron, 17, 1112(2011).

    [37] K Yamano, K Kishino. Selective area growth of InGaN-based nanocolumn LED crystals on AlN/Si substrates useful for integrated μ-LED fabrication. Appl Phys Lett, 112, 091105(2018).

    [38] D Kohen, V Tileli, n C Cayron et al. Al catalyzed growth of silicon nanowires and subsequent in situ dry etching of the catalyst for photovoltaic application. Phys Status Solidi A, 208, 2676(2011).

    [39] R S Wagner, W C Ellis. Vapor-liquid-solid mechanism of single-crystal growth. Appl Phys Lett, 4, 89(1964).

    [40] M E Messing, K Hillerich, J Johansson et al. The use of gold for fabrication of nanowire structures. Gold Bulletin, 42, 172(2009).

    [41] Y Zhang, J Wu, M Aagesen et al. III–V nanowires and nanowire optoelectronic devices. J Phys D, 48, 463001(2015).

    [42] N Li, T Y Tan, U Gösele. Transition region width of nanowire hetero- and pn-junctions grown using vapor–liquid–solid processes. Appl Phys A, 90, 591(2008).

    [43] K Sarkar, M Palit, P Banerji et al. Silver catalyzed growth of InxGa1–xAs nanowires on Si (001) by metal–organic chemical vapour deposition. CrystEngComm, 17, 8519(2015).

    [44] C Colombo, D Spirkoska, M Frimmer et al. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys Rev B, 77, 155326(2008).

    [45] S G Ghalamestani, M Ek, M Ghasemi et al. Morphology and composition controlled GaxIn1–xSb nanowires: understanding ternary antimonide growth. Nanoscale, 6, 1086(2014).

    [46] A Berg, F Lenrick, N Vainorius et al. Growth parameter design for homogeneous material composition in ternary GaxIn1–xP nanowires. Nanotechnology, 26, 435601(2015).

    [47] K A Dick, J Bolinsson, B M Borg et al. Controlling the abruptness of axial heterojunctions in III–V nanowires: beyond the reservoir effect. Nano Lett, 12, 3200(2012).

    [48] J Motohisa, J Noborisaka, S Hara et al. Catalyst-free growth of semiconductor nanowires by selective area MOVPE. AIP Conference Proceedings, 772, 877(2005).

    [49] G Koblmuüller, G Abstreiter. Growth and properties of InGaAs nanowires on silicon. Phys Status Solidi, 7, 11(2013).

    [50] J C Shin, K J Choi, D Y Kim et al. Characteristics of strain-induced InxGa1–xAs nanowires grown on Si (111) substrates. Cryst Growth Des, 12, 2994(2012).

    [51] F Glas. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys Rev B, 74, 121302(2006).

    [52] L Li, D Pan, Y Xue et al. Near full-composition-range high-quality GaAs1–xSbx nanowires grown by molecular beam epitaxy. Nano Lett, 17, 622(2017).

    [53] J H van der Merwe. Misfit dislocations in epitaxy. Metall Mater Trans A, 33, 2475(2002).

    [54] K L Kavanagh. Misfit dislocations in nanowire heterostructures. Semicond Sci Technol, 25, 024006(2010).

    [55] M de la Mata, C Magen, P Caroff et al. Atomic scale strain relaxation in axial semiconductor III–V nanowire heterostructures. Nano Lett, 14, 6614(2014).

    [56] J Grönqvist, N Søndergaard, F Boxberg et al. Strain in semiconductor core/shell nanowires. J Appl Phys, 106, 053508(2009).

    [57] D Ferrand, J Cibert. Strain in crystalline core-shell nanowires. Eur Phys J: Appl Phys, 67, 30403(2014).

    [58] L Gagliano, M Albani, M A Verheijen et al. Twofold origin of strain-induced bending in core-shell nanowires: the GaP/InGaP case. Nanotechnology, 29, 315703(2018).

    [59] R B Lewis, P Corfdir, H Kupers et al. nanowires bending over backward from strain partitioning in asymmetric core-shell heterostructures. Nano Lett, 18, 2343(2018).

    [60] K L Kavanagh, I Saveliev, M Blumin et al. Faster radial strain relaxation in InAs–GaAs core–shell heterowires. Appl Phys Lett, 111, 044301(2012).

    [61] S A Dayeh, W Tang, F Boioli et al. Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires. Nano Lett, 13, 1869(2013).

    [62] J Gronqvist, N Sondergaard, F Boxberg et al. Strain in semiconductor core/shell nanowires. J Appl Phys, 106, 053508(2009).

    [63] A Biermanns, T Rieger, G Bussone et al. Axial strain in GaAs/InAs core–shell nanowires. Appl Phys Lett, 102, 043109(2013).

    [64] H Zeng, X Yu, H A Fonseka et al. Hybrid III–V/IV nanowires: high- quality Ge shell epitaxy on GaAs cores. Nano Lett, 18, 6397(2018).

    [65] J J Tietjen, J A Amick. The preparation and properties of vapour-deposited epitaxial GaAs1–xPx using arsine and phosphine. J Electrochem Soc, 113, 724(1966).

    [66] G Priante, G Patriarche, F Oehler et al. Abrupt GaP/GaAs interfaces in self-catalyzed nanowires. Nano Lett, 15, 6036(2015).

    [67] N N Halder, A Kelrich, S Cohen et al. Pure wurtzite GaP nanowires grown on zincblende GaP substrates by selective area vapor liquid solid epitaxy. Nanotechnology, 28, 465603(2017).

    [68] H S Im, C S Jung, K Park et al. Band gap tuning of twinned GaAsP ternary nanowires. J Phys Chem C, 118, 4546(2014).

    [69] Y Zhang, M Aagesen, J V Holm et al. Self-catalyzed GaAsP nanowires grown on silicon substrates by solid-source molecular beam epitaxy. Nano Lett, 13, 3897(2013).

    [70] Y Zhang, J Wu, M Aagesen et al. Self-catalyzed ternary core-shell GaAsP nanowire arrays grown on patterned Si substrates by molecular beam epitaxy. Nano Lett, 14, 4542(2014).

    [71] J Wu, A Ramsay, A M Sanchez et al. Defect-free self-catalyzed GaAs/GaAsP nanowire quantum dots grown on silicon substrate. Nano Lett, 16, 504(2016).

    [72] Iv Isako, M Panfilova, M J L Sourribes et al. InAs1–xPx nanowires grown by catalyst-free molecular-beam epitaxy. Nanotechnology, 24, 085707(2013).

    [73] J H Lee, M W Pin, S J Choi et al. Electromechanical properties and spontaneous response of the current in inasp nanowires. Nano Lett, 16, 6738(2016).

    [74] A I Persson, M T Björk, S Jeppesen et al. InAs1–xPx nanowires for device engineering. Nano Lett, 6, 403(2006).

    [75] J Trägårdh, A I Persson, J B Wagner et al. Measurements of the band gap of wurtzite InAs1–xPx nanowires using photocurrent spectroscopy. J Appl Phys, 101, 123701(2007).

    [76] M Tchernycheva, G E Cirlin, G Patriarche et al. Growth and characterization of InP nanowires with InAsP insertions. Nano Lett, 7, 1500(2007).

    [77] G E Cirlin, M Tchernycheva, G Patriarche et al. Effect of postgrowth heat treatment on the structural and optical properties of InP/InAsP/InP nanowires. Semiconductors, 46, 175(2012).

    [78] L Ma, X Zhang, H Li et al. Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm. Semicond Sci Technol, 30, 105033(2015).

    [79] J Huh, H Yun, D C Kim et al. Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients. Nano Lett, 15, 3709(2015).

    [80] D Ren, J Huh, D L Dheeraj et al. Influence of pitch on the morphology and luminescence properties of self-catalyzed GaAsSb nanowire arrays. Appl Phys Lett, 109, 243102(2016).

    [81] X Yu, L Li, H Wang et al. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy. Nanoscale, 8, 10615(2016).

    [82] E Ahmad, M R Karim, S B Hafiz et al. A two-step growth pathway for high Sb incorporation in GaAsSb nanowires in the telecommunication wavelength range. Sci Rep, 7, 10111(2017).

    [83] M Sharma, M R Karim, P Kasanaboina et al. Pitch-induced bandgap tuning in self-catalyzed growth of patterned GaAsSb axial and GaAs/GaAsSb core-shell nanowires using molecular beam epitaxy. Cryst Growth Des, 17, 730(2017).

    [84] E Alarcon-Llado, S Conesa-Boj, X Wallart et al. Raman spectroscopy of self-catalyzed GaAs1–xSbx nanowires grown on silicon. Nanotechnology, 24, 405707(2013).

    [85] S Conesa-Boj, D Kriegner, X Han et al. Gold-free ternary III–V antimonide nanowire arrays on silicon: twin-free down to the first bilayer. Nano Lett, 14, 326(2014).

    [86] S Plissard, K A. WallartS Dick et al. Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon. Appl Phys Lett, 96, 121901(2010).

    [87] A Alhodaib, Y J Noori, P J Carrington et al. Room-temperature mid-infrared emission from faceted InAsSb multi quantum wells embedded in InAs nanowires. Nano Lett, 18, 235(2018).

    [88] W N Du, X G Yang, X Y Wang et al. The self-seeded growth of InAsSb nanowires on silicon by metal-organic vapour phase epitaxy. J Cryst Growth, 396, 33(2014).

    [89] E A Anyebe, Q Zhang. Self-catalysed InAs1–xSbx nanowires grown directly on bare Si substrates. Mater Res Bull, 60, 572(2014).

    [90] Q D Zhang, E A Anyebe, R Chen et al. Sb-induced phase control of InAsSb nanowires grown by molecular beam epitaxy. Nano Lett, 15, 1109(2015).

    [91] W Du, X Yang, H Pan et al. Two different growth mechanisms for Au-free InAsSb nanowires growth on Si substrate. Cryst Growth Des, 15, 2413(2015).

    [92] W Du, X Yang, H Pan et al. Controlled-direction growth of planar InAsSb nanowires on Si substrates without foreign catalysts. Nano Lett, 16, 877(2016).

    [93] Q D Zhuang, H Alradhi, Z M Jin et al. Optically efficient InAsSb nanowires for silicon-based mid-wavelength infrared optoelectronics. Nanotechnology, 28, 105710(2017).

    [94] E A Anyebe, M K Rajpalke, T D Veal et al. Surfactant effect of antimony addition to the morphology of self-catalyzed InAs1–xSbx nanowires. Nano Res, 8, 1309(2015).

    [95] M D Thompson, A Alhodaib, A P Craig et al. Low Leakage-current InAsSb nanowire photodetectors on silicon. Nano Lett, 16, 182(2016).

    [96] G E Cirlin, R R Reznik, I V Shtrom et al. AlGaAs and AlGaAs/GaAs/AlGaAs nanowires grown by molecular beam epitaxy on silicon substrates. J Phys D, 50, 484003(2017).

    [97] M J Tambe, S K Lim, M J Smith et al. Realization of defect-free epitaxial core/shell GaAs/AlGaAs nanowire heterostructures. Appl Phys Lett, 93, 151917(2008).

    [98] L V Titova, T B Hoang, H E Jackson et al. Temperature dependence of photoluminescence from single core–shell GaAs–AlGaAs nanowires. Appl Phys Lett, 89, 173126(2006).

    [99] T B Hoang, L V Titova, J M Yarrison-Rice et al. Resonant excitation and imaging of non-equilibrium exciton spins in single core-shell GaAs-AlGaAs nanowires. Nano Lett, 7, 588(2007).

    [100] G Koblmuüller, B Mayer, T Stettner et al. GaAs-AlGaAs core-shell nanowire lasers on silicon: invited review. Semicond Sci Technol, 32, 053001(2017).

    [101] D Saxena, S Mokkapati, P Parkinson et al. Optically pumped room-temperature GaAs nanowire lasers. Nat Photonics, 7, 963(2013).

    [102] M Heiss, Y Fontana, A Gustafsson et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat Mater, 12, 439(2013).

    [103] C Chen, S Shehata, C R Fradin et al. Self-directed growth of AlGaAs core-shell nanowires for visible applications. Nano Lett, 7, 2584(2007).

    [104] Z H Wu, M Sun, X Y Mei et al. Growth and photoluminescence characteristics of AlGaAs nanowires. Appl Phys Lett, 85, 657(2004).

    [105] V G Dubrovskii, I V Shtrom, R R Reznik et al. Origin of spontaneous core-shell AlGaAs nanowires grown by molecular beam epitaxy. Crys Growth Des, 16, 7251(2016).

    [106] J Guo, H Hang, Y Ding et al. Growth of zinc blende GaAs/AlGaAs heterostructure nanowires on Si substrate by using AlGaAs buffer layers. J Cryst Growth, 359, 30(2012).

    [107] B Loitsch, J Winnerl, G Grimaldi et al. Crystal phase quantum dots in the ultrathin core of GaAs–AlGaAs core–shell nanowires. Nano Lett, 15, 7544(2015).

    [108] C P Dietrich, A Fiore, M G Thompson et al. GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits. Laser Photonics Rev, 10, 870(2016).

    [109] R Chen, T T D Tran, K W Ng et al. Nanolasers grown on silicon. Nat Photonics, 5, 170(2011).

    [110] J Tatebayashi, S Kako, J Ho et al. Room-temperature lasing in a single nanowire with quantum dots. Nat Photonics, 9, 501(2015).

    [111] J J Hou, F Wang, N Han et al. Stoichiometric effect on electrical, optical and structural properties of composition-tunable InxGa1–xAs nanowires. ACS Nano, 6, 9320(2012).

    [112] J C Shin, D Y Kim, A Lee et al. Improving the composition uniformity of Au-catalyzed InGaAs nanowires on silicon. J Cryst Growth, 372, 15(2013).

    [113] J C Shin, K H Kim, H Hu et al. Monolithically grown InxGa1–xAs nanowire array on silicon tandem solar cells with high efficiency. IEEE Photonic Society 24th Annual Meeting(2011).

    [114] J C Shin, K H Kim, K J Yu et al. InxGa1–xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics. Nano Lett, 11, 4831(2011).

    [115] J Treu, M Speckbacher, K Saller et al. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy. Appl Phys Lett, 108, 053110(2016).

    [116] S Morkötter, S Funk, M Liang et al. Role of microstructure on optical properties in high-uniformity InxGa1–xAs nanowire arrays: Evidence of a wider wurtzite band gap. Phys Rev B, 87, 205303(2013).

    [117] A Berg, S Yazdi, A Nowzari et al. Radial nanowire light-emitting diodes in the (AlxGa1–x)yIn1–yP material system. Nano Lett, 16, 656(2016).

    [118] P Kivisaari, A Berg, M Karimi et al. Optimization of current injection in AlGaInP core-shell nanowire light-emitting diodes. Nano Lett, 17, 3599(2017).

    [119] X Li, T Shi, G Liu et al. Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III–V nanowire/Si film two-junction solar cells. Opt Express, 23, 25316(2015).

    [120] S E H Amiri, P Ranga, D Y Li et al. Growth of InGaP alloy nanowires with widely tunable bandgaps on silicon substrates. Conference on Lasers and Electro-Optics(2017).

    [121] J Tatebayashi, A Lin, P S Wong et al. Visible light emission from self-catalyzed GaInP/GaP core-shell double heterostructure nanowires on silicon. J Appl Phys, 108, 034315(2010).

    [122] A Fakhr, Y M Haddara, R R LaPierre. Dependence of InGaP nanowire morphology and structure on molecular beam epitaxy growth conditions. Nanotechnology, 21, 165601(2010).

    [123] D Jacobsson, J M Persson, D Kriegner et al. Particle-assisted GaxIn1–xP nanowire growth for designed bandgap structures. Nanotechnology, 23, 245601(2012).

    [124] A Berg, P Caroff, N Shahid et al. Growth and optical properties of InxGa1–xP nanowires synthesized by selective-area epitaxy. Nano Res, 10, 672(2017).

    [125] G Otnes, M Heurlin, X L Zeng et al. InxGa1–xP nanowire growth dynamics strongly affected by doping using diethylzinc. Nano Lett, 17, 702(2017).

    [126] S G Ghalamestani, M Ek, B Gamjipour et al. Demonstration of defect-free and composition tunable GaxIn1–xSb nanowires. Nano Lett, 12, 4914(2012).

    [127] H Zhou, M Pozuelo, R F Hicks et al. Self-catalyzed vapour-liquid-solid growth of InP1–xSbx nanostructures. J Cryst Growth, 319, 25(2011).

    [128] H B Russell, A N Andriotis, M Menon et al. Direct band gap gallium antimony phosphide (GaSbxP1–x) alloys. Sci Rep, 6, 20822(2016).

    [129] L Gagliano, M Kruijsse, J D D Schefold et al. Efficient green emission from wurtzite AlxIn1–xP nanowires. Nano Lett, 18, 3543(2018).

    [130] B Mayer, D Rudolph, J Schnell et al. Lasing from individual GaAs–AlGaAs core–shell nanowires up to room temperature. Nat Commun, 4, 2931(2013).

    [131] M D Birowosuto, A Yokoo, G Zhang et al. Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. Nat Mater, 13, 279(2014).

    [132] D Ren, L Ahtapodov, J S Nilsen et al. Single-mode near-infrared lasing in a GaAsSb-based nanowire superlattice at room temperature. Nano Lett, 18, 2304(2018).

    [133] T Stettner, A Thurn, M Döblinger et al. Tuning lasing emission toward long wavelengths in GaAs-(In,Al)GaAs core-multishell nanowires. Nano Lett, 18, 6292(2018).

    [134] H Kim, W J Lee, A C Farrell et al. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator. Nano Lett, 17, 5244(2017).

    [135] H Kim, A C Farrell, P Senanayake et al. Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links. Nano Lett, 16, 1833(2016).

    [136] W J Lee, H Kim, J B You et al. Ultracompact bottom-up photonic crystal lasers on silicon-on-insulator. Sci Rep, 7, 9543(2017).

    [137] Y Zhang, H Liu. Nanowires for high-efficiency, low-cost solar photovoltaics. Crystals, 9, 87(2019).

    [138] R Lin, S V Galan, H Sun et al. Tapering-induced enhancement of light extraction efficiency of nanowire deep ultraviolet LED by theoretical simulations. Photonics Res, 6, 457(2018).

    [139] Y Zhang, A M Sanchez, M Aagesen et al. Growth and fabrication of high-quality single nanowire devices with radial p–i–n junctions. Small, 15, 1803684(2019).

    [140] J V Holm, H I Jørgensen, P Krogstrup et al. Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon. Nat Commun, 4, 1498(2013).

    [141] J J Hou, F Wang, N Han et al. Diameter dependence of electron mobility in InGaAs nanowires. Appl Phys Lett, 102, 093112(2013).

    [142] O P Kilpi, J Svensson, J Wu et al. Vertical InAs/InGaAs heterostructure metal–oxide–semiconductor field-effect transistors on Si. Nano Lett, 17, 6006(2017).

    Giorgos Boras, Xuezhe Yu, Huiyun Liu. III–V ternary nanowires on Si substrates: growth, characterization and device applications[J]. Journal of Semiconductors, 2019, 40(10): 101301
    Download Citation