• Advanced Photonics Nexus
  • Vol. 2, Issue 5, 054001 (2023)
Jinge Yang1、†, Seongwook Choi1, Jiwoong Kim1, Byullee Park2、*, and Chulhong Kim1、*
Author Affiliations
  • 1Pohang University of Science and Technology, School of Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Pohang, Republic of Korea
  • 2Sungkyunkwan University, Institute of Quantum Biophysics, Department of Biophysics, Suwon, Republic of Korea
  • show less
    DOI: 10.1117/1.APN.2.5.054001 Cite this Article Set citation alerts
    Jinge Yang, Seongwook Choi, Jiwoong Kim, Byullee Park, Chulhong Kim. Recent advances in deep-learning-enhanced photoacoustic imaging[J]. Advanced Photonics Nexus, 2023, 2(5): 054001 Copy Citation Text show less
    References

    [1] L. V. Wang, S. Hu. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 335, 1458-1462(2012).

    [2] L. V. Wang, J. Yao. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods, 13, 627-638(2016).

    [3] J. Yang, S. Choi, C. Kim. Practical review on photoacoustic computed tomography using curved ultrasound array transducer. Biomed. Eng. Lett., 12, 19-35(2022).

    [4] W. Choi et al. Recent advances in contrast-enhanced photoacoustic imaging: overcoming the physical and practical challenges. Chem. Rev., 123, 7379-7419(2023).

    [5] W. Choi et al. Three-dimensional multistructural quantitative photoacoustic and US imaging of human feet in vivo. Radiology, 303, 467-473(2022).

    [6] S. Lei et al. In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy. Nat. Commun., 13, 1298(2022).

    [7] E.-Y. Park et al. Simultaneous dual-modal multispectral photoacoustic and ultrasound macroscopy for three-dimensional whole-body imaging of small animals. Photonics, 8, 13(2021).

    [8] N. Kwon et al. Hexa-BODIPY-cyclotriphosphazene based nanoparticle for NIR fluorescence/photoacoustic dual-modal imaging and photothermal cancer therapy. Biosens. Bioelectron., 216, 114612(2022).

    [9] C. Kim, C. Favazza, L. V. Wang. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem. Rev., 110, 2756-2782(2010).

    [10] J. Yang et al. Assessment of nonalcoholic fatty liver function by photoacoustic imaging. J. Biomed. Opt., 28, 016003(2023).

    [11] S. Cho et al. 3D PHOVIS: 3D photoacoustic visualization studio. Photoacoustics, 18, 100168(2020).

    [12] J. Kim et al. Real-time photoacoustic thermometry combined with clinical ultrasound imaging and high-intensity focused ultrasound. IEEE Trans. Biomed. Eng., 66, 3330-3338(2019).

    [13] B. Park et al. Functional photoacoustic imaging: from nano- and micro- to macro-scale. Nano Converg., 10, 29(2023).

    [14] J. Li et al. Spatial heterogeneity of oxygenation and haemodynamics in breast cancer resolved in vivo by conical multispectral optoacoustic mesoscopy. Light Sci. Appl., 9, 57(2020).

    [15] J. Yang et al. Photoacoustic assessment of hemodynamic changes in foot vessels. J. Biophotonics, 12, e201900004(2019).

    [16] J. Yang et al. Detecting hemodynamic changes in the foot vessels of diabetic patients by photoacoustic tomography. J. Biophotonics, 13, e202000011(2020).

    [17] J. Yang et al. Photoacoustic imaging of hemodynamic changes in forearm skeletal muscle during cuff occlusion. Biomed. Opt. Express, 11, 4560-4570(2020).

    [18] M. R. Tomaszewski et al. Oxygen-enhanced and dynamic contrast-enhanced optoacoustic tomography provide surrogate biomarkers of tumor vascular function, hypoxia, and necrosis. Cancer Res., 78, 5980-5991(2018).

    [19] V. M. Sciortino et al. Longitudinal cortex-wide monitoring of cerebral hemodynamics and oxygen metabolism in awake mice using multi-parametric photoacoustic microscopy. J Cereb. Blood Flow Metab., 41, 3187-3199(2021).

    [20] J. Yang et al. Intracerebral haemorrhage-induced injury progression assessed by cross-sectional photoacoustic tomography. Biomed. Opt. Express, 8, 5814-5824(2017).

    [21] J. Kim et al. Multiparametric photoacoustic analysis of human thyroid cancers in vivo. Cancer Res., 81, 4849-4860(2021).

    [22] B. Park et al. 3D wide-field multispectral photoacoustic imaging of human melanomas in vivo: a pilot study. J. Eur. Acad. Dermatol. Venereol., 35, 669-676(2021).

    [23] N. Nikhila, X. Jun. Photoacoustic imaging of breast cancer: a mini review of system design and image features. J. Biomed. Opt., 24, 121911(2019).

    [24] B. Park, C. Kim, J. Kim. Recent advances in ultrasound and photoacoustic analysis for thyroid cancer diagnosis. Adv. Phys. Res., 2, 2200070(2023).

    [25] B. Park et al. Listening to drug delivery and responses via photoacoustic imaging. Adv. Drug Delivery Rev., 184, 114235(2022).

    [26] T. Qiu et al. Assessment of liver function reserve by photoacoustic tomography: a feasibility study. Biomed. Opt. Express, 11, 3985-3995(2020).

    [27] H. Jung et al. A peptide probe enables photoacoustic-guided imaging and drug delivery to lung tumors in K-rasLA2 mutant mice. Cancer Res., 79, 4271-4282(2019).

    [28] S. K. Kalva et al. Rapid volumetric optoacoustic tracking of nanoparticle kinetics across murine organs. ACS Appl. Mater. Interfaces, 14, 172-178(2022).

    [29] H. H. Han et al. Bimetallic hyaluronate-modified Au@Pt nanoparticles for noninvasive photoacoustic imaging and photothermal therapy of skin cancer. ACS Appl. Mater. Interfaces, 15, 11609-11620(2023).

    [30] T. G. Nguyen Cao et al. Engineered extracellular vesicle-based sonotheranostics for dual stimuli-sensitive drug release and photoacoustic imaging-guided chemo-sonodynamic cancer therapy. Theranostics, 12, 1247-1266(2022).

    [31] J. Yao, L. V. Wang. Photoacoustic microscopy. Laser Photonics Rev., 7, 758-778(2013).

    [32] J. Ahn et al. Fully integrated photoacoustic microscopy and photoplethysmography of human in vivo. Photoacoustics, 27, 100374(2022).

    [33] J. Park et al. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer. Proc. Natl. Acad. Sci. U. S. A., 118, e1920879118(2021).

    [34] S.-W. Cho et al. High-speed photoacoustic microscopy: a review dedicated on light sources. Photoacoustics, 24, 100291(2021).

    [35] J. W. Baik et al. Intraoperative label-free photoacoustic histopathology of clinical specimens. Laser Photonics Rev., 15, 2100124(2021).

    [36] J. Ahn et al. High-resolution functional photoacoustic monitoring of vascular dynamics in human fingers. Photoacoustics, 23, 100282(2021).

    [37] J. Ahn et al. In vivo photoacoustic monitoring of vasoconstriction induced by acute hyperglycemia. Photoacoustics, 30, 100485(2023).

    [38] B. Park et al. Shear-force photoacoustic microscopy: toward super-resolution near-field imaging. Laser Photonics Rev., 16, 2200296(2022).

    [39] J. W. Baik et al. Super wide-field photoacoustic microscopy of animals and humans in vivo. IEEE Trans. Med. Imaging, 39, 975-984(2020).

    [40] C. Lee et al. Three-dimensional clinical handheld photoacoustic/ultrasound scanner. Photoacoustics, 18, 100173(2020).

    [41] C. Lee et al. Panoramic volumetric clinical handheld photoacoustic and ultrasound imaging. Photoacoustics, 31, 100512(2023).

    [42] W. Kim et al. Wide-field three-dimensional photoacoustic/ultrasound scanner using a two-dimensional matrix transducer array. Opt. Lett., 48, 343-346(2023).

    [43] W. Choi, D. Oh, C. Kim. Practical photoacoustic tomography: realistic limitations and technical solutions. J. Appl. Phys., 127, 230903(2020).

    [44] S. K. Kalva, M. Pramanik. Experimental validation of tangential resolution improvement in photoacoustic tomography using modified delay-and-sum reconstruction algorithm. J. Biomed. Opt., 21, 086011(2016).

    [45] S. Cho et al. Nonlinear pth root spectral magnitude scaling beamforming for clinical photoacoustic and ultrasound imaging. Opt. Lett., 45, 4575-4578(2020).

    [46] S. Jeon et al. Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans. Photoacoustics, 15, 100136(2019).

    [47] M. Xu, L. V. Wang. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E, 71, 016706(2005).

    [48] K. P. Köstli, P. C. Beard. Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response. Appl. Opt., 42, 1899-1908(2003).

    [49] B. E. Treeby, E. Z. Zhang, B. T. Cox. Photoacoustic tomography in absorbing acoustic media using time reversal. Inverse Prob., 26, 115003(2010).

    [50] I. Steinberg et al. Superiorized photo-acoustic non-negative reconstruction (spanner) for clinical photoacoustic imaging. IEEE Trans. Med. Imaging, 40, 1888-1897(2021).

    [51] S. Bu et al. Model-based reconstruction integrated with fluence compensation for photoacoustic tomography. IEEE Trans. Biomed. Eng., 59, 1354-1363(2012).

    [52] S. Choi et al. Deep learning enhances multiparametric dynamic volumetric photoacoustic computed tomography in vivo (DL‐PACT). Adv. Sci. (Weinh.), 10, 2202089(2023).

    [53] A. Hariri et al. Deep learning improves contrast in low-fluence photoacoustic imaging. Biomed. Opt. Express, 11, 3360-3373(2020).

    [54] J. Li et al. Deep learning-based quantitative optoacoustic tomography of deep tissues in the absence of labeled experimental data. Optica, 9, 32-41(2022).

    [55] T. Tong et al. Domain transform network for photoacoustic tomography from limited-view and sparsely sampled data. Photoacoustics, 19, 100190(2020).

    [56] S. Jeon et al. A deep learning-based model that reduces speed of sound aberrations for improved in vivo photoacoustic imaging. IEEE Trans. Image Process., 30, 8773-8784(2021).

    [57] C. D. Ly et al. Full-view in vivo skin and blood vessels profile segmentation in photoacoustic imaging based on deep learning. Photoacoustics, 25, 100310(2022).

    [58] L. Kang et al. Deep learning enables ultraviolet photoacoustic microscopy based histological imaging with near real-time virtual staining. Photoacoustics, 25, 100308(2022).

    [59] J. Gröhl et al. Deep learning for biomedical photoacoustic imaging: a review. Photoacoustics, 22, 100241(2021).

    [60] X. Zhu et al. Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy. Light Sci. Appl., 11, 138(2022).

    [61] T. C. Benjamin et al. Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt., 17, 061202(2012).

    [62] C. Huang et al. Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media. IEEE Trans. Med. Imaging, 32, 1097-1110(2013).

    [63] F. Y. Wang et al. Where does AlphaGo go: from Church-Turing thesis to AlphaGo thesis and beyond. IEEE/CAA J. Autom. Sin., 3, 113-120(2016).

    [64] S. Ioffe, C. Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift, 448-456(2015).

    [65] D. E. Rumelhart, G. E. Hinton, R. J. Williams. Learning representations by back-propagating errors. Nature, 323, 533-536(1986).

    [66] Y. LeCun et al. Backpropagation applied to handwritten zip code recognition. Neural Comput., 1, 541-551(1989).

    [67] S. Ruder. An overview of gradient descent optimization algorithms(2016).

    [68] C. Belthangady, L. A. Royer. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods, 16, 1215-1225(2019).

    [69] O. Ronneberger, P. Fischer, T. Brox. U-Net: convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci., 9351, 234-241(2015).

    [70] J. Long, E. Shelhamer, T. Darrell. Fully convolutional networks for semantic segmentation, 3431-3440(2015).

    [71] I. Goodfellow et al. Generative adversarial networks. Commun. ACM, 63, 139-144(2020).

    [72] D. Berthelot, T. Schumm, L. Metz. BEGAN: boundary equilibrium generative adversarial networks(2017).

    [73] A. Hauptmann, B. Cox. Deep learning in photoacoustic tomography: current approaches and future directions. J. Biomed. Opt., 25, 112903(2020).

    [74] H. Deng et al. Deep learning in photoacoustic imaging: a review. J. Biomed. Opt., 26, 040901(2021).

    [75] G. Wissmeyer et al. Looking at sound: optoacoustics with all-optical ultrasound detection. Light Sci. Appl., 7, 53(2018).

    [76] G. Sreedevi et al. Deep neural network-based bandwidth enhancement of photoacoustic data. J. Biomed. Opt., 22, 116001(2017).

    [77] T. Lu et al. LV-GAN: a deep learning approach for limited-view optoacoustic imaging based on hybrid datasets. J. Biophotonics, 14, e202000325(2021).

    [78] H. Lan et al. Y-Net: hybrid deep learning image reconstruction for photoacoustic tomography in vivo. Photoacoustics, 20, 100197(2020).

    [79] B. E. Treeby, J. Jaros, B. T. Cox. Advanced photoacoustic image reconstruction using the k-Wave toolbox. Proc. SPIE, 9708, 97082P(2016).

    [80] S. Ma, S. Yang, H. Guo. Limited-view photoacoustic imaging based on linear-array detection and filtered mean-backprojection-iterative reconstruction. J. Appl. Phys., 106, 123104(2009).

    [81] Y. Tang et al. High-fidelity deep functional photoacoustic tomography enhanced by virtual point sources. Photoacoustics, 29, 100450(2023).

    [82] S. Vilov et al. Photoacoustic fluctuation imaging: theory and application to blood flow imaging. Optica, 7, 1495-1505(2020).

    [83] H. Deng et al. Machine-learning enhanced photoacoustic computed tomography in a limited view configuration. Proc. SPIE, 11186, 111860J(2019).

    [84] K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition(2014).

    [85] J. Zhang et al. Limited-view photoacoustic imaging reconstruction with dual domain inputs based on mutual information, 1522-1526(2021).

    [86] J. Staal et al. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging, 23, 501-509(2004).

    [87] Y. Xu, D. Feng, L. V. Wang. Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry. IEEE Trans. Med. Imaging, 21, 823-828(2002).

    [88] L. Li, L. V. Wang. Recent advances in photoacoustic tomography. BME Front., 2021, 9823268(2021).

    [89] S. Guan et al. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal. IEEE J. Biomed. Health. Inf., 24, 568-576(2019).

    [90] P. Farnia et al. High-quality photoacoustic image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging. Biomed. Phys. Eng. Express, 6, 045019(2020).

    [91] M. Guo et al. AS-Net: fast photoacoustic reconstruction with multi-feature fusion from sparse data. IEEE Trans. Comput. Imaging, 8, 215-223(2022).

    [92] H. Lan et al. Ki-GAN: knowledge infusion generative adversarial network for photoacoustic image reconstruction in vivo. Lect. Notes Comput. Sci., 11764, 273-281(2019).

    [93] A. DiSpirito et al. Reconstructing undersampled photoacoustic microscopy images using deep learning. IEEE Trans. Med. Imaging, 40, 562-570(2020).

    [94] M. Chen et al. Simultaneous photoacoustic imaging of intravascular and tissue oxygenation. Opt. Lett., 44, 3773-3776(2019).

    [95] T. Vu et al. Deep image prior for undersampling high-speed photoacoustic microscopy. Photoacoustics, 22, 100266(2021).

    [96] G. Godefroy, B. Arnal, E. Bossy. Compensating for visibility artefacts in photoacoustic imaging with a deep learning approach providing prediction uncertainties. Photoacoustics, 21, 100218(2021).

    [97] Y. Gal, Z. Ghahramani. Dropout as a Bayesian approximation: representing model uncertainty in deep learning, 1050-1059(2016).

    [98] T. Vu et al. A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer. Exp. Biol. Med. (Maywood), 245, 597-605(2020).

    [99] C. Ledig et al. Photo-realistic single image super-resolution using a generative adversarial network, 4681-4690(2017).

    [100] H. Zhang et al. A new deep learning network for mitigating limited-view and under-sampling artifacts in ring-shaped photoacoustic tomography. Comput. Med. Imaging Graph., 84, 101720(2020).

    [101] N. Davoudi, X. L. Deán-Ben, D. Razansky. Deep learning optoacoustic tomography with sparse data. Nat. Mach. Intell., 1, 453-460(2019).

    [102] N. Davoudi et al. Deep learning of image-and time-domain data enhances the visibility of structures in optoacoustic tomography. Opt. Lett., 46, 3029-3032(2021).

    [103] N. Awasthi et al. Deep neural network-based sinogram super-resolution and bandwidth enhancement for limited-data photoacoustic tomography. IEEE Trans. Ultrasonics, Ferroelectr. Freq. Control, 67, 2660-2673(2020).

    [104] D.-A. Clevert, T. Unterthiner, S. Hochreiter. Fast and accurate deep network learning by exponential linear units (ELUS)(2015).

    [105] J. Schwab et al. Real-time photoacoustic projection imaging using deep learning(2018).

    [106] T. Karras et al. Progressive growing of GANS for improved quality, stability, and variation(2017).

    [107] K. Daoudi et al. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging. Opt. Express, 22, 26365-26374(2014).

    [108] A. Hariri et al. The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics, 9, 10-20(2018).

    [109] P. Rajendran, M. Pramanik. High frame rate (3  Hz) circular photoacoustic tomography using single-element ultrasound transducer aided with deep learning. J. Biomed. Opt., 27, 066005(2022). https://doi.org/10.1117/1.JBO.27.6.066005

    [110] H. Zhao et al. Deep learning enables superior photoacoustic imaging at ultralow laser dosages. Adv. Sci. (Weinh.), 8, 2003097(2021).

    [111] M. K. A. Singh et al. Deep learning-enhanced LED-based photoacoustic imaging. Proc. SPIE, 11240, 1124038(2020).

    [112] E. M. A. Anas et al. Towards a fast and safe LED-based photoacoustic imaging using deep convolutional neural network. Lect. Notes Comput. Sci., 11073, 159-167(2018).

    [113] L. R. Medsker, L. Jain. Recurrent Neural Networks(2001).

    [114] E. M. A. Anas et al. Enabling fast and high quality LED photoacoustic imaging: a recurrent neural networks based approach. Biomed. Opt. Express, 9, 3852-3866(2018).

    [115] M. Li, Y. Tang, J. Yao. Photoacoustic tomography of blood oxygenation: a mini review. Photoacoustics, 10, 65-73(2018).

    [116] S. Tzoumas et al. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat. Commun., 7, 1-10(2016).

    [117] A. Rosenthal, D. Razansky, V. Ntziachristos. Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography. IEEE Trans. Med. Imaging, 29, 1275-1285(2010).

    [118] X. L. Deán-Ben, D. Razansky. A practical guide for model-based reconstruction in optoacoustic imaging. Front. Phys., 10, 1057(2022).

    [119] C. Cai et al. End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging. Opt. Lett., 43, 2752-2755(2018).

    [120] C. Yang et al. Quantitative photoacoustic blood oxygenation imaging using deep residual and recurrent neural network, 741-744(2019).

    [121] G. P. Luke et al. O-Net: a convolutional neural network for quantitative photoacoustic image segmentation and oximetry(2019).

    [122] C. Yang, F. Gao. EDA-Net: dense aggregation of deep and shallow information achieves quantitative photoacoustic blood oxygenation imaging deep in human breast. Lect. Notes Comput. Sci., 11764, 246-254(2019).

    [123] J. Gröhl et al. Estimation of blood oxygenation with learned spectral decoloring for quantitative photoacoustic imaging (LSD-qPAI)(2019).

    [124] C. Bench, A. Hauptmann, B. Cox. Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions. J. Biomed. Opt., 25, 085003(2020).

    [125] Y. Zou et al. Ultrasound-enhanced Unet model for quantitative photoacoustic tomography of ovarian lesions. Photoacoustics, 28, 100420(2022).

    [126] T. Chen et al. A deep learning method based on U-Net for quantitative photoacoustic imaging. Proc. SPIE, 11240, 112403V(2020).

    [127] J. Gröhl et al. Confidence estimation for machine learning-based quantitative photoacoustics. J. Imaging, 4, 147(2018).

    [128] Y. Wang et al. Nonlinear iterative perturbation scheme with simplified spherical harmonics (SP3) light propagation model for quantitative photoacoustic tomography. J. Biophotonics, 14, e202000446(2021).

    [129] G.-S. Jeng et al. Real-time interleaved spectroscopic photoacoustic and ultrasound (PAUS) scanning with simultaneous fluence compensation and motion correction. Nat. Commun., 12, 716(2021).

    [130] S. Park et al. Normalization of optical fluence distribution for three-dimensional functional optoacoustic tomography of the breast. J. Biomed. Opt., 27, 036001(2022).

    [131] J. Zhu et al. Self-fluence-compensated functional photoacoustic microscopy. IEEE Trans. Med. Imaging, 40, 3856-3866(2021).

    [132] A. Madasamy et al. Deep learning methods hold promise for light fluence compensation in three-dimensional optoacoustic imaging. J. Biomed. Opt., 27, 106004(2022).

    [133] Z. Zhang, Q. Liu, Y. Wang. Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett., 15, 749-753(2018).

    [134] A. Creswell et al. Generative adversarial networks: an overview. IEEE Signal Process Mag., 35, 53-65(2018).

    [135] D. A. Durairaj et al. Unsupervised deep learning approach for photoacoustic spectral unmixing. Proc. SPIE, 11240, 112403H(2020).

    [136] I. Olefir et al. Deep learning-based spectral unmixing for optoacoustic imaging of tissue oxygen saturation. IEEE Trans. Med. Imaging, 39, 3643-3654(2020).

    [137] S. Guan et al. Limited-view and sparse photoacoustic tomography for neuroimaging with deep learning. Sci. Rep., 10, 8510(2020).

    [138] J. Feng et al. End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging. Biomed. Opt. Express, 11, 5321-5340(2020).

    [139] W. Dominik et al. Reconstruction of initial pressure from limited view photoacoustic images using deep learning. Proc. SPIE, 10494, 104942S(2018).

    [140] A. Stephan et al. Photoacoustic image reconstruction via deep learning. Proc. SPIE, 10494, 104944U(2018).

    [141] H. Lan et al. Reconstruct the photoacoustic image based on deep learning with multi-frequency ring-shape transducer array, 7115-7118(2019).

    [142] C. Yang, H. Lan, F. Gao. Accelerated photoacoustic tomography reconstruction via recurrent inference machines, 6371-6374(2019).

    [143] M. Kim et al. Deep-learning image reconstruction for real-time photoacoustic system. IEEE Trans. Med. Imaging, 39, 3379-3390(2020).

    [144] A. Hauptmann et al. Model-based learning for accelerated, limited-view 3-D photoacoustic tomography. IEEE Trans. Med. Imaging, 37, 1382-1393(2018).

    [145] A. Hauptmann et al. Approximate k-space models and deep learning for fast photoacoustic reconstruction. Lect. Notes Comput. Sci., 11074, 103-111(2018).

    [146] M. K. A. Singh, W. Steenbergen. Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging. Photoacoustics, 3, 123-131(2015).

    [147] R. Austin, A. L. B. Muyinatu. A machine learning approach to identifying point source locations in photoacoustic data. Proc. SPIE, 10064, 100643J(2017).

    [148] D. Allman, A. Reiter, M. A. L. Bell. A machine learning method to identify and remove reflection artifacts in photoacoustic channel data, 1-4(2017).

    [149] S. Ren et al. Faster R-CNN: towards real-time object detection with region proposal networks(2015).

    [150] H. Shan, G. Wang, Y. Yang. Accelerated correction of reflection artifacts by deep neural networks in photo-acoustic tomography. Appl. Sci., 9, 2615(2019).

    [151] P. Stefanov, Y. Yang. Multiwave tomography in a closed domain: averaged sharp time reversal. Inverse Prob., 31, 065007(2015).

    [152] Z. Belhachmi, T. Glatz, O. Scherzer. A direct method for photoacoustic tomography with inhomogeneous sound speed. Inverse Prob., 32, 045005(2016).

    [153] V. Badrinarayanan, A. Kendall, R. Cipolla. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39, 2481-2495(2017).

    [154] N.-K. Chlis et al. A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography. Photoacoustics, 20, 100203(2020).

    [155] X. Lin et al. Variable speed of sound compensation in the linear-array photoacoustic tomography using a multi-stencils fast marching method. Biomed. Signal Process. Control, 44, 67-74(2018).

    [156] B. Treeby et al. Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach. J. Biomed. Opt., 16, 090501(2011).

    [157] D. Allman, A. Reiter, M. A. L. Bell. Photoacoustic source detection and reflection artifact removal enabled by deep learning. IEEE Trans. Med. Imaging, 37, 1464-1477(2018).

    [158] E. Moen et al. Deep learning for cellular image analysis. Nat. Methods, 16, 1233-1246(2019).

    [159] S. Misra et al. Deep learning-based multimodal fusion network for segmentation and classification of breast cancers using B-mode and elastography ultrasound images. Bioeng. Transl. Med., e10480(2022).

    [160] J. Zhang et al. Photoacoustic image classification and segmentation of breast cancer: a feasibility study. IEEE Access, 7, 5457-5466(2019).

    [161] A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks. Commun. ACM, 60, 84-90(2017).

    [162] C. Szegedy et al. Going deeper with convolutions, 1-9(2015).

    [163] K. Jnawali et al. Transfer learning for automatic cancer tissue detection using multispectral photoacoustic imaging. Proc. SPIE, 10950, 109503W(2019).

    [164] C. Szegedy et al. Inception-v4, inception-ResNet and the impact of residual connections on learning. Proc. AAAI Conf. Artif. Intell., 31, 4278-4284(2017).

    [165] K. Jnawali et al. Deep 3D convolutional neural network for automatic cancer tissue detection using multispectral photoacoustic imaging. Proc. SPIE, 10955, 109551D(2019).

    [166] S. Moustakidis et al. Fully automated identification of skin morphology in raster-scan optoacoustic mesoscopy using artificial intelligence. Med. Phys., 46, 4046-4056(2019).

    [167] W. A. Belson. Matching and prediction on the principle of biological classification. J. R. Stat. Soc.: Ser. C (Appl. Stat.), 8, 65-75(1959).

    [168] C. Cortes, V. Vapnik. Support-vector networks. Mach. Learn., 20, 273-297(1995).

    [169] S. Nitkunanantharajah et al. Three-dimensional optoacoustic imaging of nailfold capillaries in systemic sclerosis and its potential for disease differentiation using deep learning. Sci. Rep., 10, 16444(2020).

    [170] M. Schellenberg et al. Semantic segmentation of multispectral photoacoustic images using deep learning. Photoacoustics, 26, 100341(2022).

    [171] B. Lafci et al. Deep learning for automatic segmentation of hybrid optoacoustic ultrasound (OPUS) images. IEEE Trans. Ultrasonics, Ferroelectr. Freq. Control, 68, 688-696(2021).

    [172] Y. E. Boink, S. Manohar, C. Brune. A partially-learned algorithm for joint photo-acoustic reconstruction and segmentation. IEEE Trans. Med. Imaging, 39, 129-139(2020).

    [173] M. Schwarz et al. Motion correction in optoacoustic mesoscopy. Sci. Rep., 7, 10386(2017).

    [174] X. Tong et al. Non-invasive 3D photoacoustic tomography of angiographic anatomy and hemodynamics of fatty livers in rats. Adv. Sci. (Weinh.), 10, 2205759(2023).

    [175] X. Chen, W. Qi, L. Xi. Deep-learning-based motion-correction algorithm in optical resolution photoacoustic microscopy. Vis. Comput. Ind. Biomed. Art, 2, 12(2019).

    [176] S. Zheng et al. A deep learning method for motion artifact correction in intravascular photoacoustic image sequence. IEEE Trans. Med. Imaging, 42, 66-78(2023).

    [177] M. Jaderberg, K. Simonyan, A. Zisserman. Spatial transformer networks(2015).

    [178] S. Cheng et al. High-resolution photoacoustic microscopy with deep penetration through learning. Photoacoustics, 25, 100314(2022).

    [179] I. Gulrajani et al. Improved training of Wasserstein GANS(2017).

    [180] J. Kim et al. Deep learning acceleration of multiscale superresolution localization photoacoustic imaging. Light Sci. Appl., 11, 131(2022).

    [181] Z. Zhang et al. Deep and domain transfer learning aided photoacoustic microscopy: acoustic resolution to optical resolution. IEEE Trans. Med. Imaging, 41, 3636-3648(2022).

    [182] C. Dehner et al. Deep-learning-based electrical noise removal enables high spectral optoacoustic contrast in deep tissue. IEEE Trans. Med. Imaging, 41, 3182-3193(2022).

    [183] D. He et al. De-noising of photoacoustic microscopy images by attentive generative adversarial network. IEEE Trans. Med. Imaging, 42, 1349-1362(2022).

    [184] O. Gulenko et al. Deep-learning-based algorithm for the removal of electromagnetic interference noise in photoacoustic endoscopic image processing. Sensors, 22, 3961(2022).

    [185] J. Kim et al. Deep learning alignment of bidirectional raster scanning in high speed photoacoustic microscopy. Sci. Rep., 12, 16238(2022).

    [186] J. Kim et al. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. Light Sci. Appl., 8, 103(2019).

    [187] W. Choi, C. Kim. Toward in vivo translation of super-resolution localization photoacoustic computed tomography using liquid-state dyed droplets. Light Sci. Appl., 8, 57(2019).

    [188] P. Isola et al. Image-to-image translation with conditional adversarial networks, 1125-1134(2017).

    [189] T. T. W. Wong et al. Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Sci. Adv., 3, e1602168(2017).

    [190] B. Bai et al. Deep learning-enabled virtual histological staining of biological samples. Light Sci. Appl., 12, 57(2023).

    [191] M. Boktor et al. Virtual histological staining of label-free total absorption photoacoustic remote sensing (TA-PARS). Sci. Rep., 12, 10296(2022).

    [192] R. Cao et al. Label-free intraoperative histology of bone tissue via deep-learning-assisted ultraviolet photoacoustic microscopy. Nat. Biomed. Eng., 7, 124-134(2023).

    [193] J.-Y. Zhu et al. Unpaired image-to-image translation using cycle-consistent adversarial networks, 2223-2232(2017).

    [194] L. Yu et al. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms. J. Biomed. Opt., 23, 010504(2018).

    [195] S. Bohndiek. Addressing photoacoustics standards. Nat. Photonics, 13, 298-298(2019).

    [196] L. Qi et al. Photoacoustic tomography image restoration with measured spatially variant point spread functions. IEEE Trans. Med. Imaging, 40, 2318-2328(2021).

    [197] R. Shnaiderman et al. A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature, 585, 372-378(2020).

    [198] E. Merčep et al. Transmission–reflection optoacoustic ultrasound (TROPUS) computed tomography of small animals. Light Sci. Appl., 8, 18(2019).

    [199] G. Kim et al. Integrated deep learning framework for accelerated optical coherence tomography angiography. Sci. Rep., 12, 1289(2022).

    [200] S. Misra et al. Bi-modal transfer learning for classifying breast cancers via combined B-mode and ultrasound strain imaging. IEEE Trans. Ultrasonics, Ferroelectr. Freq. Control, 69, 222-232(2022).

    [201] S. Misra et al. Multi-channel transfer learning of chest x-ray images for screening of COVID-19. Electronics, 9, 1388(2020).

    [202] C. Yoon et al. Collaborative multi-modal deep learning and radiomic features for classification of strokes within 6 h. Expert Syst. Appl., 228, 120473(2023).

    [203] S. Misra et al. A voting-based ensemble feature network for semiconductor wafer defect classification. Sci. Rep., 12, 16254(2022).

    [204] S. Kim et al. Convolutional neural network–based metal and streak artifacts reduction in dental CT images with sparse-view sampling scheme. Med. Phys., 49, 6253-6277(2022).

    [205] S. Choi et al. In situ x-ray-induced acoustic computed tomography with a contrast agent: a proof of concept. Opt. Lett., 47, 90-93(2022).

    [206] S. Choi et al. Synchrotron x-ray induced acoustic imaging. Sci. Rep., 11, 4047(2021).

    [207] H. Kim et al. Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain. Sci. Rep., 11, 22520(2021).

    Jinge Yang, Seongwook Choi, Jiwoong Kim, Byullee Park, Chulhong Kim. Recent advances in deep-learning-enhanced photoacoustic imaging[J]. Advanced Photonics Nexus, 2023, 2(5): 054001
    Download Citation