• Journal of Semiconductors
  • Vol. 43, Issue 7, 072101 (2022)
Qiqi Wei1、2, Hailong Wang1、2, Xupeng Zhao1、2, and Jianhua Zhao1、2、3、*
Author Affiliations
  • 1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/43/7/072101 Cite this Article
    Qiqi Wei, Hailong Wang, Xupeng Zhao, Jianhua Zhao. Electron mobility anisotropy in (Al,Ga)Sb/InAs two-dimensional electron gases epitaxied on GaAs (001) substrates[J]. Journal of Semiconductors, 2022, 43(7): 072101 Copy Citation Text show less
    References

    [1] D C Tsui, H L Stormer, A C Gossard. Two-dimensional magnetotransport in the extreme quantum limit. Phys Rev Lett, 48, 1559(1982).

    [2] R Willett, J P Eisenstein, H L Störmer et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys Rev Lett, 59, 1776(1987).

    [3] M Kjaergaard, F Nichele, H J Suominen et al. Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure. Nat Commun, 7, 1(2016).

    [4] J Shabani, M Kjærgaard, H J Suominen et al. Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks. Phys Rev B, 93, 155402(2016).

    [5] J H Lee, J H Lee. Enhanced output power of InGaN-based light-emitting diodes with AlGaN/GaN two-dimensional electron gas structure. IEEE Electron Device Lett, 31, 455(2010).

    [6] J H Lee, J H Lee. High-power InGaN-based LED with tunneling-junction-induced two-dimensional electron gas at AlGaN/GaN heterostructure. IEEE Trans Electron Devices, 58, 3058(2011).

    [7] A Sandhu, A Okamoto, I Shibasaki et al. Nano and micro Hall-effect sensors for room-temperature scanning hall probe microscopy. Microelectron Eng, 73, 524(2004).

    [8] A Sandhu, H Masuda, A Oral et al. Room temperature scanning Hall probe microscopy using GaAs/AlGaAs and Bi micro-hall probes. Ultramicroscopy, 91, 97(2002).

    [9] H Kroemer. The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: a selective review. Physica E, 20, 196(2004).

    [10] A Nakagawa, H Kroemer, J H English. Electrical properties and band offsets of InAs/AlSb n-N isotype heterojunctions grown on GaAs. Appl Phys Lett, 54, 1893(1989).

    [11] A Rogalski, P Martyniuk, M Kopytko. InAs/GaSb type-II superlattice infrared detectors: Future prospect. Appl Phys Rev, 4, 031304(2017).

    [12] T Hosoda, T Feng, L Shterengas et al. High power cascade diode lasers emitting near 2 μm. Appl Phys Lett, 108, 131109(2016).

    [13] P Nam Hai, L Duc Anh, S Mohan et al. Growth and characterization of n-type electron-induced ferromagnetic semiconductor (In, Fe) As. Appl Phys Lett, 101, 182403(2012).

    [14] T Dietl, A Bonanni, H Ohno. Families of magnetic semiconductors-an overview. J Semicond, 40, 080301(2019).

    [15] B Gu. High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems. J Semicond, 40, 081504(2019).

    [16] J B Boos, W Kruppa, B R Bennett et al. AlSb/InAs HEMT's for low-voltage, high-speed applications. IEEE Trans Electron Devices, 45, 1869(1998).

    [17] B Y Ma, J Bergman, P Chen et al. InAs/AlSb HEMT and its application to ultra-low-power wideband high-gain low-noise amplifiers. IEEE Trans Microwave Theory Tech, 54, 4448(2006).

    [18] G Moschetti, H Zhao, P Å Nilsson et al. Anisotropic transport properties in InAs/AlSb heterostructures. Appl Phys Lett, 97, 243510(2010).

    [19] L Desplanque, S El Kazzi, J L Codron et al. AlSb nucleation induced anisotropic electron mobility in AlSb/InAs heterostructures on GaAs. Appl Phys Lett, 100, 262103(2012).

    [20] S Löhr, S Mendach, T Vonau et al. Highly anisotropic electron transport in shallow InGaAs heterostructures. Phys Rev B, 67, 045309(2003).

    [21] Y Tokura, T Saku, S Tarucha et al. Anisotropic roughness scattering at a heterostructure interface. Phys Rev B, 46, 15558(1992).

    [22] M Akabori, T Q Trinh, M Kudo et al. Strain-enhanced electron mobility anisotropy in InxGa1 – xAs/InP two-dimensional electron gases. Physica E, 42, 1130(2010).

    [23] Q Q Wei, H L Wang, S C Tong et al. Ga composition effects on the electrical parameters of (Al, Ga) Sb/InAs two-dimensional electron gas. Semicond Sci Technol, 36, 025002(2020).

    [24] R S Goldman, H H Wieder, K L Kavanagh et al. Anisotropic structural, electronic, and optical properties of InGaAs grown by molecular beam epitaxy on misoriented substrates. Appl Phys Lett, 65, 1424(1994).

    [25] D N Quang, V N Tuoc, N H Tung et al. Random piezoelectric field in real [001]-oriented strain-relaxed semiconductor heterostructures. Phys Rev Lett, 89, 077601(2002).

    [26] D N Quang, V N Tuoc, T D Huan. Roughness-induced piezoelectric scattering in lattice-mismatched semiconductor quantum wells. Phys Rev. B, 68, 195316(2003).

    [27] E Anastassakis. Strained superlattices and heterostructures: Elastic considerations. J Appl Phys, 68, 4561(1990).

    [28] S P Le, T Suzuki. Electron mobility anisotropy in InAs/GaAs (001) heterostructures. Appl Phys Lett, 118, 182101(2021).

    [29] T Saku, Y Horikoshi, Y Tokura. Limit of electron mobility in AlGaAs/GaAs modulation-doped heterostructures. Jpn J Appl Phys, 35, 34(1996).

    [30] S Cho, A Majerfeld, A Sanz-Hervás et al. Determination of the pyroelectric coefficient in strained InGaAs/GaAs quantum wells grown on (111)B GaAs substrates. J Appl Phys, 90, 915(2001).

    [31] J J Sanchez, J I Izpura, J M G Tijero et al. Confirmation of the pyroelectric coefficient of strained InxGa1–xAs/GaAs quantum well structures grown on (111)B GaAs by differential photocurrent spectroscopy. J Appl Phys, 91, 3002(2002).

    [32] S Cho, A Majerfeld, J J Sánchez et al. Observation of the pyroelectric effect in strained piezoelectric InGaAs/GaAs quantum-wells grown on (111) GaAs substrates. Microelectron J, 33, 531(2002).

    [33] Z H Li, W X Wang, L S Liu et al. Buffer influence on AlSb/InAs/AlSb quantum wells. J Cryst Growth, 301, 181(2007).

    Qiqi Wei, Hailong Wang, Xupeng Zhao, Jianhua Zhao. Electron mobility anisotropy in (Al,Ga)Sb/InAs two-dimensional electron gases epitaxied on GaAs (001) substrates[J]. Journal of Semiconductors, 2022, 43(7): 072101
    Download Citation