• Photonics Research
  • Vol. 10, Issue 9, 2024 (2022)
Mahmoud H. Elshorbagy1、2, Luis Miguel Sánchez-Brea1, Jerónimo Buencuerpo1、3, Jesús del Hoyo1, Ángela Soria-García1, Verónica Pastor-Villarrubia1, Alejandro San-Blas4、5, Ainara Rodríguez4、5, Santiago Miguel Olaizola4、5, and Javier Alda1、*
Author Affiliations
  • 1Grupo Complutense de Óptica Aplicada, Departamento de Óptica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Plaza de las Ciencias S.N., 28040 Madrid, Spain
  • 2Physics Department, Faculty of Science, Minia University, 61519 El-Minya, Egypt
  • 3L’Institut Photovoltaïque d’Ⓘle-de-France (IPVF), 18 Bd Thomas Gobert, 91120 Palaiseau, France
  • 4Ceit-Basque Research and Technology Alliance (BRTA), Manuel Lardizabal 15, 20018 Donostia/San Sebastián, Spain
  • 5Universidad de Navarra, Tecnun, Manuel Lardizabal 13, 20018 Donostia/San Sebastián, Spain
  • show less
    DOI: 10.1364/PRJ.454451 Cite this Article Set citation alerts
    Mahmoud H. Elshorbagy, Luis Miguel Sánchez-Brea, Jerónimo Buencuerpo, Jesús del Hoyo, Ángela Soria-García, Verónica Pastor-Villarrubia, Alejandro San-Blas, Ainara Rodríguez, Santiago Miguel Olaizola, Javier Alda. Polarization conversion using customized subwavelength laser-induced periodic surface structures on stainless steel[J]. Photonics Research, 2022, 10(9): 2024 Copy Citation Text show less
    References

    [1] Y. P. Svirko, N. I. Zheludev. Polarization of Light in Nonlinear Optics(2000).

    [2] D. F. Eaton. Nonlinear optical materials. Science, 253, 281-287(1991).

    [3] V. Lucarini, J. J. Saarinen, K.-E. Peiponen, E. M. Vartiainen. Kramers-Kronig Relations in Optical Materials Research, 110(2005).

    [4] M. K. Chen, Y. Wu, L. Feng, Q. Fan, M. Lu, T. Xu, D. P. Tsai. Principles, functions, and applications of optical meta-lens. Adv. Opt. Mater., 9, 2001414(2021).

    [5] M. B. Ross, C. A. Mirkin, G. C. Schatz. Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures. J. Phys. Chem. C, 120, 816-830(2016).

    [6] J. Alda, G. D. Boreman. Infrared Antennas and Resonant Structures(2017).

    [7] J. Zhou, L. J. Guo. Transition from a spectrum filter to a polarizer in a metallic nano-slit array. Sci. Rep., 4, 3614(2014).

    [8] L. Wang, Z. Zhang. Resonance transmission or absorption in deep gratings explained by magnetic polaritons. Appl. Phys. Lett., 95, 111904(2009).

    [9] C. Han, W. Y. Tam. Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays. Appl. Phys. Lett., 106, 081102(2015).

    [10] C. Lertvachirapaiboon, A. Baba, S. Ekgasit, K. Shinbo, K. Kato, F. Kaneko. Transmission surface plasmon resonance techniques and their potential biosensor applications. Biosens. Bioelectron., 99, 399-415(2018).

    [11] A. Polyakov, K. Thompson, S. Dhuey, D. Olynick, S. Cabrini, P. Schuck, H. Padmore. Plasmon resonance tuning in metallic nanocavities. Sci. Rep., 2, 933(2012).

    [12] M. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, M. Scalora. Tailoring absorption in metal gratings with resonant ultrathin bridges. Plasmonics, 8, 1445-1456(2013).

    [13] H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, R. T. Chen. Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides. Opt. Express, 24, 29724-29733(2016).

    [14] N. Kazanskiy, M. Butt, S. Khonina. Silicon photonic devices realized on refractive index engineered subwavelength grating waveguides-a review. Opt. Laser Technol., 138, 106863(2021).

    [15] P. Dong, Y. Wu, W. Guo, J. Di. Plasmonic biosensor based on triangular Au/Ag and Au/Ag/Au core/shell nanoprisms onto indium tin oxide glass. Plasmonics, 8, 1577-1583(2013).

    [16] D. V. Nesterenko, Z. Sekkat. Resolution estimation of the Au, Ag, Cu, and Al single-and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions. Plasmonics, 8, 1585-1595(2013).

    [17] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva. Searching for better plasmonic materials. Laser Photon. Rev., 4, 795-808(2010).

    [18] L. Polavarapu, L. M. Liz-Marzán. Towards low-cost flexible substrates for nanoplasmonic sensing. Phys. Chem. Chem. Phys., 15, 5288-5300(2013).

    [19] M. Seo, J. Lee, M. Lee. Grating-coupled surface plasmon resonance on bulk stainless steel. Opt. Express, 25, 26939-26949(2017).

    [20] M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, M. B. Jun. Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures. Appl. Surf. Sci., 257, 7771-7777(2011).

    [21] T.-F. Yao, P.-H. Wu, T.-M. Wu, C.-W. Cheng, S.-Y. Yang. Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser. Microelectron. Eng., 88, 2908-2912(2011).

    [22] P. Boillot, J. Peultier. Use of stainless steels in the industry: recent and future developments. Proc. Eng., 83, 309-321(2014).

    [23] L. Chi. Nanotechnology, 8(2010).

    [24] J. Bonse, A. Rosenfeld, J. Krüger. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J. Appl. Phys., 106, 104910(2009).

    [25] A. Y. Vorobyev, C. Guo. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photon. Rev., 7, 385-407(2013).

    [26] M. Birnbaum. Semiconductor surface damage produced by ruby lasers. J. Appl. Phys., 36, 3688-3689(1965).

    [27] M. J. Cherukara, K. Sasikumar, A. DiChiara, S. J. Leake, W. Cha, E. M. Dufresne, T. Peterka, I. McNulty, D. A. Walko, H. Wen, S. J. R. S. Sankaranarayanan, R. J. Harder. Ultrafast three-dimensional integrated imaging of strain in core/shell semiconductor/metal nanostructures. Nano Lett., 17, 7696-7701(2017).

    [28] C. Byram, S. S. B. Moram, A. K. Shaik, V. R. Soma. Versatile gold based SERS substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate. Chem. Phys. Lett., 685, 103-107(2017).

    [29] A. Y. Zhizhchenko, P. Tonkaev, D. Gets, A. Larin, D. Zuev, S. Starikov, E. V. Pustovalov, A. M. Zakharenko, S. A. Kulinich, S. Juodkazis, A. A. Kuchmizhak, S. V. Makarov. Light-emitting nanophotonic designs enabled by ultrafast laser processing of halide perovskites. Small, 16, 2000410(2020).

    [30] M. Sanz, M. Lopez-Arias, J. F. Marco, R. de Nalda, S. Amoruso, G. Ausanio, S. Lettieri, R. Bruzzese, X. Wang, M. Castillejo. Ultrafast laser ablation and deposition of wide band gap semiconductors. J. Phys. Chem. C, 115, 3203-3211(2011).

    [31] A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, T. E. Itina. Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin. Sci. Rep., 7, 12306(2017).

    [32] A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, P. G. Kazansky. Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring. ACS Photon., 4, 2944-2951(2017).

    [33] A. San-Blas, M. Martinez-Calderon, J. Buencuerpo, L. M. Sanchez-Brea, J. Del Hoyo, M. Gómez-Aranzadi, A. Rodríguez, S. Olaizola. Femtosecond laser fabrication of LIPSS-based waveplates on metallic surfaces. Appl. Surf. Sci., 520, 146328(2020).

    [34] J. Sipe, J. F. Young, J. Preston, H. Van Driel. Laser-induced periodic surface structure. I. Theory. Phys. Rev. B, 27, 1141-1154(1983).

    [35] A. Vorobyev, C. Guo. Enhanced absorptance of gold following multipulse femtosecond laser ablation. Phys. Rev. B, 72, 195422(2005).

    [36] C. Florian, S. V. Kirner, J. Krüger, J. Bonse. Surface functionalization by laser-induced periodic surface structures. J. Laser Appl., 32, 022063(2020).

    [37] M. Prudent, F. Bourquard, A. Borroto, J.-F. Pierson, F. Garrelie, J.-P. Colombier. Initial morphology and feedback effects on laser-induced periodic nanostructuring of thin-film metallic glasses. Nanomaterials, 11, 1076(2021).

    [38] S. Gräf, C. Kunz, S. Engel, T. J.-Y. Derrien, F. A. Müller. Femtosecond laser-induced periodic surface structures on fused silica: the impact of the initial substrate temperature. Materials, 11, 1340(2018).

    [39] Q. Li, Q. Wu, Y. Li, C. Zhang, Z. Jia, J. Yao, J. Sun, J. Xu. Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating. Photon. Res., 6, 789-793(2018).

    [40] E. Collett. Field Guide to Polarization(2005).

    [41] E. Skoulas, A. Manousaki, C. Fotakis, E. Stratakis. Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci. Rep., 7, 45114(2017).

    [42] N. Livakas, E. Skoulas, E. Stratakis. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron. Adv., 3, 190035(2020).

    [43] H. W. Siesler, Y. Ozaki, S. Kawata, H. M. Heise. Near-infrared Spectroscopy: Principles, Instruments, Applications(2008).

    Mahmoud H. Elshorbagy, Luis Miguel Sánchez-Brea, Jerónimo Buencuerpo, Jesús del Hoyo, Ángela Soria-García, Verónica Pastor-Villarrubia, Alejandro San-Blas, Ainara Rodríguez, Santiago Miguel Olaizola, Javier Alda. Polarization conversion using customized subwavelength laser-induced periodic surface structures on stainless steel[J]. Photonics Research, 2022, 10(9): 2024
    Download Citation