• Photonics Research
  • Vol. 10, Issue 9, 2024 (2022)
Mahmoud H. Elshorbagy1、2, Luis Miguel Sánchez-Brea1, Jerónimo Buencuerpo1、3, Jesús del Hoyo1, Ángela Soria-García1, Verónica Pastor-Villarrubia1, Alejandro San-Blas4、5, Ainara Rodríguez4、5, Santiago Miguel Olaizola4、5, and Javier Alda1、*
Author Affiliations
  • 1Grupo Complutense de Óptica Aplicada, Departamento de Óptica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Plaza de las Ciencias S.N., 28040 Madrid, Spain
  • 2Physics Department, Faculty of Science, Minia University, 61519 El-Minya, Egypt
  • 3L’Institut Photovoltaïque d’Ⓘle-de-France (IPVF), 18 Bd Thomas Gobert, 91120 Palaiseau, France
  • 4Ceit-Basque Research and Technology Alliance (BRTA), Manuel Lardizabal 15, 20018 Donostia/San Sebastián, Spain
  • 5Universidad de Navarra, Tecnun, Manuel Lardizabal 13, 20018 Donostia/San Sebastián, Spain
  • show less
    DOI: 10.1364/PRJ.454451 Cite this Article Set citation alerts
    Mahmoud H. Elshorbagy, Luis Miguel Sánchez-Brea, Jerónimo Buencuerpo, Jesús del Hoyo, Ángela Soria-García, Verónica Pastor-Villarrubia, Alejandro San-Blas, Ainara Rodríguez, Santiago Miguel Olaizola, Javier Alda. Polarization conversion using customized subwavelength laser-induced periodic surface structures on stainless steel[J]. Photonics Research, 2022, 10(9): 2024 Copy Citation Text show less

    Abstract

    Stainless steel is a basic raw material used in many industries. It can be customized by generating laser-induced periodic surface structure (LIPSS) as subwavelength gratings. Here, we present the capabilities of an LIPSS on stainless steel to modify the polarization state of the reflected radiation at the IR band. These structures have been modeled using the finite element method and fabricated by femtosecond laser processing. The Stokes parameters have been obtained experimentally and a model for the shape has been used to fit the simulated Stokes values to the experimental data. The birefringence of the LIPSS is analyzed to explain how they modify the polarization state of the incoming light. We find the geometry of the subwavelength grating that makes it work as an optical retarder that transforms a linearly polarized light into a circularly polarized wave. In addition, the geometrical parameters of the LIPSS are tuned to selectively absorb one of the components of the incoming light, becoming a linear axial polarizer. Appropriately selecting the geometrical parameters and orientation of the fabricated LIPSS makes it possible to obtain an arbitrary pure polarization state when illuminated by a pure linearly polarized state oriented at an azimuth of 45°. The overall reflectance of these transformations reaches values close to 60% with respect to the incident intensity, which is the same reflectivity obtained for non-nanostructured stainless steel flat surfaces.
    h(x)=GH2{12[1+cos(2πx/P)2]β},

    View in Article

    Ψ=0.5arctan(UQ),

    View in Article

    χ=arctan(VI+Q2+U2).

    View in Article

    Eout=PLIPSSEin=(Ex,outEy,out)=(PxxPxyPyxPyy)(Ex,inEy,in).

    View in Article

    PLIPSS=(|Pxx|00|Pyy|eiϕ).

    View in Article

    |Pxx|=|Ex,out/Ex,in|,

    View in Article

    |Pyy|=|Ey,out/Ey,in|,

    View in Article

    ϕ=angle(Ey,out)angle(Ex,out).

    View in Article

    R=12(|Pxx|2+|Pyy|2).

    View in Article

    Mahmoud H. Elshorbagy, Luis Miguel Sánchez-Brea, Jerónimo Buencuerpo, Jesús del Hoyo, Ángela Soria-García, Verónica Pastor-Villarrubia, Alejandro San-Blas, Ainara Rodríguez, Santiago Miguel Olaizola, Javier Alda. Polarization conversion using customized subwavelength laser-induced periodic surface structures on stainless steel[J]. Photonics Research, 2022, 10(9): 2024
    Download Citation