• Photonics Research
  • Vol. 10, Issue 2, 303 (2022)
He Cheng1, Pooria Golvari2, Chun Xia1、2, Mingman Sun3, Meng Zhang3, Stephen M. Kuebler1、2、4, and Xiaoming Yu1、*
Author Affiliations
  • 1CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA
  • 2Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
  • 3Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, USA
  • 4Department of Material Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA
  • show less
    DOI: 10.1364/PRJ.439592 Cite this Article Set citation alerts
    He Cheng, Pooria Golvari, Chun Xia, Mingman Sun, Meng Zhang, Stephen M. Kuebler, Xiaoming Yu. High-throughput microfabrication of axially tunable helices[J]. Photonics Research, 2022, 10(2): 303 Copy Citation Text show less
    References

    [1] M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, G. von Freymann. Polarization stop bands in chiral polymeric three-dimensional photonic crystals. Adv. Mater., 19, 207-210(2007).

    [2] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener. Gold helix photonic metamaterial as broadband circular polarizer. Science, 325, 1513-1515(2009).

    [3] J. B. Pendry. A chiral route to negative refraction. Science, 306, 1353-1355(2004).

    [4] E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev. Metamaterial with negative index due to chirality. Phys. Rev. B, 79, 035407(2009).

    [5] J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, M. Wegener. Tapered gold-helix metamaterials as improved circular polarizers. Appl. Phys. Lett., 100, 101109(2012).

    [6] J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, M. Wegener. A helical metamaterial for broadband circular polarization conversion. Adv. Opt. Mater., 3, 1411-1417(2015).

    [7] C. Wu, H. Li, X. Yu, F. Li, H. Chen, C. T. Chan. Metallic helix array as a broadband wave plate. Phys. Rev. Lett., 107, 177401(2011).

    [8] Z. Lu, M. Zhao, Z. Yang, L. Wu, P. Zhang, Y. Zheng, J. Duan. Broadband polarization-insensitive absorbers in 0.3–25 μm using helical metamaterials. J. Opt. Soc. Am. B, 30, 1368-1372(2013).

    [9] M. K. S. Verma, S. R. Ganneboyina, , A. Ghatak. Three-dimensional multihelical microfluidic mixers for rapid mixing of liquids. Langmuir, 24, 2248-2251(2008).

    [10] C. Shan, F. Chen, Q. Yang, Z. Jiang, X. Hou. 3D multi-microchannel helical mixer fabricated by femtosecond laser inside fused silica. Micromachines, 9, 29(2018).

    [11] M. I. Hussain, G. H. Lee, B. Engineering. Numerical thermal analysis of helical-shaped heat exchanger to improve thermal stratification inside solar. International Conference on Agricultural and Environmental Engineering, 6-10(2014).

    [12] E. S. Shukri. Numerical comparison of temperature distribution in an annular diffuser fitted with helical screw-tape hub and pimpled hub. Energy Proc., 141, 625-629(2017).

    [13] A. V. Do, B. Khorsand, S. M. Geary, A. K. Salem. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthcare Mater., 4, 1742-1762(2015).

    [14] M. Thiel, M. S. Rill, G. von Freymann, M. Wegener. Three-dimensional bi-chiral photonic crystals. Adv. Mater., 21, 4680-4682(2009).

    [15] J. Kaschke, M. Wegener. Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. Opt. Lett., 40, 3986-3989(2015).

    [16] Y. Liu, J. Campbell, O. Stein, L. Jiang, J. Hund, Y. Lu. Deformation behavior of foam laser targets fabricated by two-photon polymerization. Nanomaterials, 8, 498(2018).

    [17] G. Kumi, C. O. Yanez, K. D. Belfield, J. T. Fourkas. High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios. Lab Chip, 10, 1057-1060(2010).

    [18] S. Kawata, H. B. Sun, T. Tanaka, K. Takada. Finer features for functional microdevices. Nature, 412, 697-698(2001).

    [19] L. Yang, S. Ji, K. Xie, W. Du, B. Liu, Y. Hu, J. Li, G. Zhao, D. Wu, W. Huang, S. Liu, H. Jiang, J. Chu. High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells. Opt. Express, 25, 8144-8157(2017).

    [20] S. Ji, L. Yang, C. Zhang, Z. Cai, Y. Hu, J. Li, D. Wu, J. Chu. High-aspect-ratio microtubes with variable diameter and uniform wall thickness by compressing Bessel hologram phase depth. Opt. Lett., 43, 3514-3517(2018).

    [21] S. Ji, L. Yang, Y. Hu, J. Ni, W. Du, J. Li, G. Zhao, D. Wu, J. Chu. Dimension-controllable microtube arrays by dynamic holographic processing as 3D yeast culture scaffolds for asymmetrical growth regulation. Small, 13, 1701190(2017).

    [22] L. Yang, D. Qian, C. Xin, Z. Hu, S. Ji, D. Wu, Y. Hu, J. Li, W. Huang, J. Chu. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam. Opt. Lett., 42, 743-746(2017).

    [23] L. Yang, D. Qian, C. Xin, Z. Hu, S. Ji, D. Wu, Y. Hu, J. Li, W. Huang, J. Chu. Direct laser writing of complex microtubes using femtosecond vortex beams. Appl. Phys. Lett., 110, 221103(2017).

    [24] H. Cheng, C. Xia, M. Zhang, S. M. Kuebler, X. Yu. Fabrication of high-aspect-ratio structures using Bessel-beam-activated photopolymerization. Appl. Opt., 58, D91-D97(2019).

    [25] J. Jezek, T. Cizmár, V. Nedela, P. Zemánek. Formation of long and thin polymer fiber using nondiffracting beam. Opt. Express, 14, 8506-8515(2006).

    [26] D. Pan, B. Xu, S. Liu, J. Li, Y. Hu, D. Wu, J. Chu. Amplitude-phase optimized long depth of focus femtosecond axilens beam for single-exposure fabrication of high-aspect-ratio microstructures. Opt. Lett., 45, 2584-2587(2020).

    [27] S.-J. Zhang, Y. Li, Z.-P. Liu, J.-L. Ren, Y.-F. Xiao, H. Yang, Q. Gong. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum. Appl. Phys. Lett., 105, 061101(2014).

    [28] J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, J. Chu. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci. Appl., 6, e17011(2017).

    [29] Y. Li, L. Liu, D. Yang, Q. Zhang, H. Yang, Q. Gong. Femtosecond laser nano/microfabrication via three-dimensional focal field engineering. Proc. SPIE, 10092, 100920B(2017).

    [30] J. Kaschke, J. K. Gansel, M. Wegener. On metamaterial circular polarizers based on metal N-helices. Opt. Express, 20, 26012-26020(2012).

    [31] J. K. Gansel, M. Wegener, S. Burger, S. Linden. Gold helix photonic metamaterials: a numerical parameter study. Opt. Express, 18, 1059-1069(2010).

    [32] C. Vetter, T. Eichelkraut, M. Ornigotti, A. Szameit. Optimization and control of two-component radially self-accelerating beams. Appl. Phys. Lett., 107, 211104(2015).

    [33] C. Vetter, T. Eichelkraut, M. Ornigotti, A. Szameit. Generalized radially self-accelerating helicon beams. Phys. Rev. Lett., 113, 183901(2014).

    [34] R. Rop, A. Dudley, C. López-Mariscal, A. Forbes. Measuring the rotation rates of superpositions of higher-order Bessel beams. J. Mod. Opt., 59, 259-267(2012).

    [35] R. Vasilyeu, A. Dudley, N. Khilo, A. Forbes. Generating superpositions of higher-order Bessel beams. Opt. Express, 17, 23389-23395(2009).

    [36] C. Schulze, F. S. Roux, A. Dudley, R. Rop, M. Duparré, A. Forbes. Accelerated rotation with orbital angular momentum modes. Phys. Rev. A, 91, 043821(2015).

    [37] C. Vetter, A. Dudley, A. Szameit, A. Forbes. Real and virtual propagation dynamics of angular accelerating white light beams. Opt. Express, 25, 20530-20540(2017).

    [38] J. Webster, C. Rosales-Guzmán, A. Forbes. Radially dependent angular acceleration of twisted light. Opt. Lett., 42, 675-678(2017).

    [39] H. Cheng, C. Xia, S. M. Kuebler, X. Yu. Aberration correction for SLM-generated Bessel beams propagating through tilted interfaces. Opt. Commun., 475, 126213(2020).

    [40] A. Vasara, J. Turunen, A. T. Friberg. Realization of general nondiffracting beams with computer-generated holograms. J. Opt. Soc. Am. A, 6, 1748-1754(1989).

    [41] N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill, R. Roy. Generation of nondiffracting Bessel beams by use of a spatial light modulator. Opt. Lett., 28, 2183-2185(2003).

    [42] C. Paterson, R. Smith. Higher-order Bessel waves produced by axicon-type computer-generated holograms. Opt. Commun., 124, 121-130(1996).

    [43] X. Yu, A. Todi, H. Tang. Bessel beam generation using a segmented deformable mirror. Appl. Opt., 57, 4677-4682(2018).

    [44] H. Cheng, C. Xia, S. M. Kuebler, P. Golvari, M. Sun, M. Zhang, X. Yu. Generation of Bessel-beam arrays for parallel fabrication in two-photon polymerization. J. Laser Appl., 33, 012040(2021).

    [45] X. Yu, C. A. Trallero-Herrero, S. Lei. Materials processing with superposed Bessel beams. Appl. Surf. Sci., 360, 833-839(2016).

    [46] O. Mendoza-Yero, G. Mínguez-Vega, J. Lancis. Encoding complex fields by using a phase-only optical element. Opt. Lett., 39, 1740-1743(2014).

    [47] L. B. Felsen, N. Marcuvitz. Radiation and Scattering of Waves(1994).

    [48] A. V. Osipov, S. A. Tretyakov. Modern Electromagnetic Scattering Theory with Applications(2017).

    [49] J. Arlt, K. Dholakia. Generation of high-order Bessel beams by use of an axicon. Opt. Commun., 177, 297-301(2000).

    [50] V. Jarutis, R. Paškauskas, A. Stabinis. Focusing of Laguerre–Gaussian beams by axicon. Opt. Commun., 184, 105-112(2000).

    [51] G. Whyte, J. Courtial. Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg–Saxton algorithm. New J. Phys., 7, 117(2005).

    [52] B. Hadad, S. Froim, H. Nagar, T. Admon, Y. Eliezer, Y. Roichman, A. Bahabad. Particle trapping and conveying using an optical Archimedes’ screw. Optica, 5, 551-556(2018).

    [53] A. Terray. Microfluidic control using colloidal devices. Science, 296, 1841-1844(2002).

    [54] P. Galajda, P. Ormos. Rotors produced and driven in laser tweezers with reversed direction of rotation. Appl. Phys. Lett., 80, 4653-4655(2002).

    [55] J. W. Goodman. Introduction to Fourier Optics(2005).

    [56] H. Lee, K. Lee, B. Ahn, J. Xu, L. Xu, K. W. Oh. A new fabrication process for uniform SU-8 thick photoresist structures by simultaneously removing edge bead and air bubbles. J. Micromech. Microeng., 21, 125006(2011).

    [57] W. Zhou. An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science, 296, 1106-1109(2002).

    [58] S. Li, Z. Yang, J. Wang, M. Zhao. Broadband terahertz circular polarizers with single- and double-helical array metamaterials. J. Opt. Soc. Am. A, 28, 19-23(2011).

    [59] Y. Yu, Z. Yang, M. Zhao, P. Lu. Broadband optical circular polarizers in the terahertz region using helical metamaterials. J. Opt., 13, 055104(2011).

    [60] https://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html. https://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html

    [61] C. N. LaFratta, L. Li. Making two-photon polymerization faster. Three-Dimensional Microfabrication Using Two-Photon Polymerization, 385-408(2020).

    [62] M. A. Skylar-Scott, M. C. Liu, Y. Wu, A. Dixit, M. F. Yanik. Guided homing of cells in multi-photon microfabricated bioscaffolds. Adv. Healthc. Mater., 5, 1233-1243(2016).

    [63] B. W. Pearre, C. Michas, J. M. Tsang, T. J. Gardner, T. M. Otchy. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope. Addit. Manuf., 30, 100887(2019).

    [64] A. Ovsianikov, A. Deiwick, S. Van Vlierberghe, P. Dubruel, L. Möller, G. Drager, B. Chichkov. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules, 12, 851-858(2011).

    He Cheng, Pooria Golvari, Chun Xia, Mingman Sun, Meng Zhang, Stephen M. Kuebler, Xiaoming Yu. High-throughput microfabrication of axially tunable helices[J]. Photonics Research, 2022, 10(2): 303
    Download Citation