• Photonics Research
  • Vol. 10, Issue 2, 303 (2022)
He Cheng1, Pooria Golvari2, Chun Xia1、2, Mingman Sun3, Meng Zhang3, Stephen M. Kuebler1、2、4, and Xiaoming Yu1、*
Author Affiliations
  • 1CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA
  • 2Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
  • 3Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, USA
  • 4Department of Material Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA
  • show less
    DOI: 10.1364/PRJ.439592 Cite this Article Set citation alerts
    He Cheng, Pooria Golvari, Chun Xia, Mingman Sun, Meng Zhang, Stephen M. Kuebler, Xiaoming Yu. High-throughput microfabrication of axially tunable helices[J]. Photonics Research, 2022, 10(2): 303 Copy Citation Text show less

    Abstract

    Helical structures exhibit novel optical and mechanical properties and are commonly used in different fields such as metamaterials and microfluidics. A few methods exist for fabricating helical microstructures, but none of them has the throughput or flexibility required for patterning a large surface area with tunable pitch. In this paper, we report a method for fabricating helical structures with adjustable forms over large areas based on multiphoton polymerization (MPP) using single-exposure, three dimensionally structured, self-accelerating, axially tunable light fields. The light fields are generated as a superposition of high-order Bessel modes and have a closed-form expression relating the design of the phase mask to the rotation rate of the beam. The method is used to fabricate helices with different pitches and handedness in the material SU-8. Compared to point-by-point scanning, the method reported here can be used to reduce fabrication time by two orders of magnitude, paving the way for adopting MPP in many industrial applications.
    I(r,θ,z)=I[r,θ+W(z)z],

    View in Article

    ω(z)=W(z)dW(z)dzz.

    View in Article

    BBPl=kr+lθ,BBPm=kr+mθ.

    View in Article

    RPMl=RPMm=lm2v(r)r.

    View in Article

    φ(r,θ)=(BBPl+RPMl)×BAMl+(BBPm+RPMm)×BAMm.

    View in Article

    ω(z)=kkM2v(M2kkz)zkkM2v(M2kkz).

    View in Article

    v(r)=1rM2kkω(M2kkr)dr,

    View in Article

    I(r,θ,z)=I[r,θ+W(z)z],(A1)

    View in Article

    ω(z)=W(z)dW(z)dzz.(A2)

    View in Article

    t(r,θ)=eikreilθ,(A3)

    View in Article

    tl(r,θ)=eiφ1=exp{i[klm2υ(r)]r}exp(ilθ),(A4)

    View in Article

    tm(r,θ)=eiφ2=exp{i[k+lm2υ(r)]r}exp(imθ).(A5)

    View in Article

    M1,2=12α=β=Λ1,2(α,β)ei2παxpei2πβyp,(A6)

    View in Article

    Λ1,2(α,β)cos[π(α±β)2]sinc(α2)sinc(β2).(A7)

    View in Article

    eiφ(x,y)=M1(x,y)eφ1(x,y)+M2(x,y)eφ2(x,y),(A8)

    View in Article

    φ(x,y)=M1(x,y)φ1(x,y)+M2(x,y)φ2(x,y).(A9)

    View in Article

    H(u,ν)=U0(x1,y1)ei2π(x1xf+y1yf)f1λdx1dy1=circ(x12+y12R)ex12+y12w02eiφ(x1,y1)×ei2π(x1xf+y1yf)f1λdx1dy1.(A10)

    View in Article

    H(u,ν)=[12α=β=Λ1(α,β)Ψ(uαp,νβp)+12α=β=Λ2(α,β)Ω(uαp,νβp)]Γ(u,ν),(A11)

    View in Article

    H(u,ν)P(u,ν)=12F{tlm(r,θ)}Γ(u,ν),(A12)

    View in Article

    F{tlm(r,θ)}=Ψ(u,ν)+Ω(u,ν).(A13)

    View in Article

    U(r0,θ0)=T(Mr0,θπ)circ(Mr0R)eM2r02w02,(A14)

    View in Article

    Um(r0,θ0)=eimπei[k+lm2v(Mr0)]Mr0eimθ0circ(Mr0R)eM2r02w02.(A15)

    View in Article

    Um(r,θ,z)=1iλzeimπeikzeikr22z0RMdr0r0eikr022zeM2r02w02ei[k+lm2v(Mr0)]Mr002πdθ0eimθ0eikrr0zcos(θθ0),(A16)

    View in Article

    RRM,(A17)

    View in Article

    kMk,(A18)

    View in Article

    w0w0M,(A19)

    View in Article

    V(r0)Mv(Mr0).(A20)

    View in Article

    Um(r,θ,z)=1iλzeimπeikzeikr22z0Rdr0r0eikr022zer02w02ei[k+lm2v(r0)]r002πdθ0eimθ0eikrr0zcos(θθ0).(A21)

    View in Article

    02πdθ0eimθ0eikrr0zcos(θθ0)=2π(i)meimθ0Jm(krr0z),(A22)

    View in Article

    Um(r,θ,z)=1iλzeimπeikzeikr22z2π(i)meimθ0×0Rdr0f(r0)eikμ(r0),(A23)

    View in Article

    f(r0)=r0er02w02Jm(krr0z)eilm2v(r0)r0,(A24)

    View in Article

    μ(r0)=r022zkkr0.(A25)

    View in Article

    0Rdr0f(r0)eikμ(r0)f(rc)eikμ(rc)2πikμ(rc),(A26)

    View in Article

    Um(r,θ,z)=(2π)32(i)12(i)m1λkk32z12ek2k2w02z2×ei(kz+kr22zk22kz)eilm2v(kkz)kkzeimθJm(kr).(A27)

    View in Article

    I(r,θ,z)l+m=|Um(r,φ,z)+Ul(r,φ,z)|2=ze2k2k2w02z2{|Cl|2Jl2(kr)+|Cm|2Jm2(kr)+2|ClCm|Jl(kr)Jm(kr)×cos{(lm)[θ+Mv(Mkkz)kkz]+θlm}},(A28)

    View in Article

    Cl=(2π)32(i)12(i)l1λkk32,(A29)

    View in Article

    Cm=(2π)32(i)12(i)m1λkk32.(A30)

    View in Article

    I(r,θ,z)l+m=|Cl|2Jl2(kr)+|Cm|2Jm2(kr)+2|ClCm|Jl(kr)Jm(kr)×cos{(lm)[θ+Mv(Mkkz)kkz]+θlm}.(A31)

    View in Article

    θ+Mv(kkz)kkz=const.(A32)

    View in Article

    θ+M2v(M2kkz)kkz=const.(A33)

    View in Article

    ω(z)=dθdz=kkM2v(M2kkz)zkkM2v(M2kkz),(A34)

    View in Article

    ω(M2kkr)=kkM2v(r)rkkM2v(r).(A35)

    View in Article

    v(r)=1rM2kkω(M2kkr)dr.(A36)

    View in Article

    A(fx,fy;z=0)=U(x0,y0)ei2π(x0fx+y0fy)dx0dy0,(C1)

    View in Article

    A(fx,fy;z0)=A(fx,fy;0)ei2πλ1(λfx)2(λfy)2z0.(C2)

    View in Article

    A(fx,fy;z0)=A(fx,fy;0)ei2πλz0eiπλ[(λfx)2(λfy)2]z0.(C3)

    View in Article

    A(fx,fy;z1+z0)=T(fx,fy)A(fx,fy;0)×ei2πλz0eiπλ[(λfx)2(λfy)2]z0ein2πλz1ei1nπλ[(λfx)2(λfy)2]z1=T(fx,fy)A(fx,fy;0)ei2πλz0(1n2)×eikn(z1+nz0)eikn2n2[(λfx)2(λfy)2](z1+nz0).(C4)

    View in Article

    I(r,φ,z=z1+z0)l+m=(z1+nz0)e2k2kn2w02(z1+nz0)2×{|Cl|2Jl2(kr)+|Cm|2Jm2(kr)+2|ClCm|Jl(kr)Jm(kr)×cos{(lm){θ+Mv[Mkkn(z1+nz0)]kkn(z1+nz0)}+θlm}}.(C5)

    View in Article

    ω(z=z1+z0)=kknM2v[M2kkn(z1+nz0)](z1+nz0)kknM2v[M2kkn(z1+nz0)],(C6)

    View in Article

    He Cheng, Pooria Golvari, Chun Xia, Mingman Sun, Meng Zhang, Stephen M. Kuebler, Xiaoming Yu. High-throughput microfabrication of axially tunable helices[J]. Photonics Research, 2022, 10(2): 303
    Download Citation