• Advanced Photonics Nexus
  • Vol. 2, Issue 1, 016002 (2023)
Yitian Tong1、†,*, Xudong Guo1, Mingsheng Li1, Huajun Tang1, Najia Sharmin1, Yue Xu1, Wei-Ning Lee1, Kevin K. Tsia1、2、3, and Kenneth K. Y. Wong1、3、*
Author Affiliations
  • 1The University of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong, China
  • 2The University of Hong Kong, School of Biomedical Science, Hong Kong, China
  • 3Advanced Biomedical Instrumentation Centre, Hong Kong, China
  • show less
    DOI: 10.1117/1.APN.2.1.016002 Cite this Article Set citation alerts
    Yitian Tong, Xudong Guo, Mingsheng Li, Huajun Tang, Najia Sharmin, Yue Xu, Wei-Ning Lee, Kevin K. Tsia, Kenneth K. Y. Wong. Ultrafast optical phase-sensitive ultrasonic detection via dual-comb multiheterodyne interferometry[J]. Advanced Photonics Nexus, 2023, 2(1): 016002 Copy Citation Text show less
    References

    [1] P. Beard. Biomedical photoacoustic imaging. Interface Focus, 1, 602-631(2011).

    [2] X. Wang et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol., 21, 803-806(2003).

    [3] L. V. Wang. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics, 3, 503-509(2009).

    [4] C. Kim et al. Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed. Opt. Express, 1, 278-284(2010).

    [5] L. W. Schmerr. Fundamentals of Ultrasonic Nondestructive Evaluation(2016).

    [6] B. W. Drinkwater, P. D. Wilcox. Ultrasonic arrays for non-destructive evaluation: a review. NDT & E Int., 39, 525-541(2006).

    [7] X. Li et al. 80-MHz intravascular ultrasound transducer using PMN-PT free-standing film. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 2281-2288(2011).

    [8] J. Jung et al. Review of piezoelectric micromachined ultrasonic transducers and their applications. J. Micromech. Microeng., 27, 113001(2017).

    [9] T. A. Pitts, A. Sagers, J. F. Greenleaf. Optical phase contrast measurement of ultrasonic fields. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 48, 1686-1694(2001).

    [10] E. K. Reichel, B. G. Zagar. Phase contrast method for measuring ultrasonic fields. IEEE Trans. Instrum. Meas., 55, 1356-1361(2006).

    [11] M. A. Tadayon, M. E. Baylor, S. Ashkenazi. Polymer waveguide Fabry–Perot resonator for high-frequency ultrasound detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61, 2132-2138(2014).

    [12] J. M. Kweun et al. Transmodal Fabry–Pérot resonance: theory and realization with elastic metamaterials. Phys. Rev. Lett., 118, 205901(2017).

    [13] H. Fan et al. Ultrasound sensing based on an in-fiber dual-cavity Fabry–Perot interferometer. Opt. Lett., 44, 3606-3609(2019).

    [14] T. Liu, M. Han. Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection. IEEE Sens. J., 12, 2368-2373(2012).

    [15] J. Guo et al. Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating. Opt. Express, 22, 19573-19580(2014).

    [16] J. Guo, C. Yang. Highly stabilized phase-shifted fiber Bragg grating sensing system for ultrasonic detection. IEEE Photonics Technol. Lett., 27, 848-851(2015).

    [17] Y. Zhu et al. Ultrasensitive ultrasound detection using an intracavity phase-shifted fiber Bragg grating in a self-injection-locked diode laser. Opt. Lett., 44, 5525-5528(2019).

    [18] T. Ling, S. L. Chen, L. J. Guo. Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector. Opt. Express, 19, 861-869(2011).

    [19] H. Li et al. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci. Rep., 4, 4496(2014).

    [20] H. Wei, S. Krishnaswamy. Polymer micro-ring resonator integrated with a fiber ring laser for ultrasound detection. Opt. Lett., 42, 2655-2658(2017).

    [21] W. J. Westerveld et al. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nat. Photonics, 15, 341-345(2021).

    [22] J. A. Guggenheim et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics, 11, 714-719(2017).

    [23] R. Shnaiderman et al. A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature, 585, 372-378(2020).

    [24] G. Paltauf et al. Photoacoustic tomography using a Mach–Zehnder interferometer as an acoustic line detector. Appl. Opt., 46, 3352-3358(2007).

    [25] R. Nuster et al. Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection. J. Biophotonics, 6, 549-559(2013).

    [26] L. Yang et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron. Adv., 5, 200076(2022).

    [27] R. Nuster et al. Photoacoustic microtomography using optical interferometric detection. J. Biomed. Opt., 15, 021307(2010).

    [28] Y. Wang, C. Li, R. K. Wang. Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector. Opt. Lett., 36, 3975-3977(2011).

    [29] S. Park et al. Noncontact photoacoustic imaging based on optical quadrature detection with a multiport interferometer. Opt. Lett., 44, 2590-2593(2019).

    [30] Z. Chen et al. Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer. Appl. Phys. Lett., 106, 043701(2015).

    [31] P. Hajireza et al. Non-interferometric photoacoustic remote sensing microscopy. Light. Sci. Appl., 6, e16278(2017).

    [32] P. HajiReza et al. Deep non-contact photoacoustic initial pressure imaging. Optica, 5, 814-820(2018).

    [33] S. M. Maswadi et al. All-optical optoacoustic microscopy based on probe beam deflection technique. Photoacoustics, 4, 91-101(2016).

    [34] G. Wissmeyer et al. Looking at sound: optoacoustics with all-optical ultrasound detection. Light. Sci. Appl., 7, 1-16(2018).

    [35] S. H. Jack, D. B. Hann, C. A. Greated. Influence of the acousto-optic effect on laser Doppler anemometry signals. Rev. Sci. Instrum., 69, 4074-4081(1998).

    [36] M Xiao, L. A. Wu, H. J. Kimble. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett., 59, 278(1987).

    [37] S. J. Park et al. Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer. Opt. Lett., 39, 4903-4906(2014).

    [38] C. Tian et al. Non-contact photoacoustic imaging using a commercial heterodyne interferometer. IEEE Sens. J., 16, 8381-8388(2016).

    [39] J. Eom et al. An all-fiber-optic combined system of noncontact photoacoustic tomography and optical coherence tomography. Sensors, 16, 734(2016).

    [40] K. Beha et al. Electronic synthesis of light. Optica, 4, 406-411(2017).

    [41] V. Torres-Company. Electro-optic combs rise above the noise. Science, 361, 1316-1316(2018).

    [42] A. Parriaux, K. Hammani, G. Millot. Electro-optic frequency combs. Adv. Opt. Photonics, 12, 223-287(2020).

    [43] J. T. Friedlein et al. Dual-comb photoacoustic spectroscopy. Nat. Commun., 11, 3152(2020).

    [44] M. Richards, J. A. Scheer, W. A. Holm. Principle of Modern Radar: Basic Principle(2010).

    [45] A. Mehrotra. Noise analysis of phase-locked loops, 277-282(2000).

    [46] J. W. M. Rogers, C. Plett, I. Marsland. Radio Frequency System Architecture and Design, 129-135(2013).

    [47] M. Fujiwara et al. Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation. J. Lightwave Technol., 21, 2705-2714(2003).

    [48] J. R. Barry, E. A. Lee. Performance of coherent optical receivers. IEEE Proc., 78, 1369-1394(1990).

    [49] B. Razavi. Design of Integrated Circuits for Optical Communications, 46-92(2012).

    [50] Olympus ultrasonic transducers(2010).

    [51] B. T. Cox, P. C. Beard. The frequency-dependent directivity of a planar Fabry–Perot polymer film ultrasound sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54, 394-404(2007).

    [52] V. V. Yakovlev et al. Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials. Adv. Mater., 25, 2351-2356(2013).

    [53] D. Gallego et al. Polymer inverted-rib optical waveguide interferometric sensor for optoacoustic imaging. Proc. SPIE, 8223, 822343(2012).

    [54] A. Rosenthal et al. Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications. Laser Photonics Rev., 8, 450-457(2014).

    [55] S. Gratt et al. Free beam Fabry–Perot-interferometer as detector for photoacoustic tomography. Proc. SPIE, 8800, 880002(2013).

    [56] R. Nuster et al. Integrated waveguide sensor for acoustic wave detection in photoacoustic tomography. Proc. SPIE, 6856, 68560E(2008).

    Yitian Tong, Xudong Guo, Mingsheng Li, Huajun Tang, Najia Sharmin, Yue Xu, Wei-Ning Lee, Kevin K. Tsia, Kenneth K. Y. Wong. Ultrafast optical phase-sensitive ultrasonic detection via dual-comb multiheterodyne interferometry[J]. Advanced Photonics Nexus, 2023, 2(1): 016002
    Download Citation