• Photonics Research
  • Vol. 10, Issue 3, 668 (2022)
Zhiyuan Ye1, Hai-Bo Wang1, Jun Xiong1、2、*, and Kaige Wang1、3、*
Author Affiliations
  • 1Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
  • 2e-mail: junxiong@bnu.edu.cn
  • 3e-mail: wangkg@bnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.446935 Cite this Article Set citation alerts
    Zhiyuan Ye, Hai-Bo Wang, Jun Xiong, Kaige Wang. Antibunching and superbunching photon correlations in pseudo-natural light[J]. Photonics Research, 2022, 10(3): 668 Copy Citation Text show less
    References

    [1] R. H. Brown, R. Q. Twiss. Correlation between photons in two coherent beams of light. Nature, 177, 27-29(1956).

    [2] R. H. Brown, R. Q. Twiss. A test of a new type of stellar interferometer on Sirius. Nature, 178, 1046-1048(1956).

    [3] R. S. Bennink, S. J. Bentley, R. W. Boyd. Two-photon’ coincidence imaging with a classical source. Phys. Rev. Lett., 89, 113601(2002).

    [4] R. S. Bennink, S. J. Bentley, R. W. Boyd, J. C. Howell. Quantum and classical coincidence imaging. Phys. Rev. Lett., 92, 033601(2004).

    [5] A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato. Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett., 93, 093602(2004).

    [6] Y. Cai, S. Y. Zhu. Ghost interference with partially coherent radiation. Opt. Lett., 29, 2716-2718(2004).

    [7] K. Wang, D. Z. Cao. Subwavelength coincidence interference with classical thermal light. Phys. Rev. A, 70, 041801(2004).

    [8] J. Cheng, S. Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Phys. Rev. Lett., 92, 093903(2004).

    [9] D. Z. Cao, J. Xiong, K. Wang. Geometrical optics in correlated imaging systems. Phys. Rev. A, 71, 013801(2005).

    [10] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, L. A. Lugiato. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett., 94, 183602(2005).

    [11] A. Valencia, G. Scarcelli, M. D’Angelo, Y. Shih. Two-photon imaging with thermal light. Phys. Rev. Lett., 94, 063601(2005).

    [12] J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, K. Wang. Experimental observation of classical subwavelength interference with a pseudothermal light source. Phys. Rev. Lett., 94, 173601(2005).

    [13] D. Zhang, Y. H. Zhai, L. A. Wu, X. H. Chen. Correlated two-photon imaging with true thermal light. Opt. Lett., 30, 2354-2356(2005).

    [14] D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, K. Wang. Enhancing visibility and resolution in Nth-order intensity correlation of thermal light. Appl. Phys. Lett., 92, 201102(2008).

    [15] J. H. Shapiro. Computational ghost imaging. Phys. Rev. A, 78, 061802(2008).

    [16] F. T. Arecchi. Measurement of the statistical distribution of Gaussian and laser sources. Phys. Rev. Lett., 15, 912-916(1965).

    [17] R. C. Liu, B. Odom, Y. Yamamoto, S. Tarucha. Quantum interference in electron collision. Nature, 391, 263-265(1998).

    [18] M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin, M. Holland, C. Schönenberger. The fermionic Hanbury Brown and Twiss experiment. Science, 284, 296-298(1999).

    [19] H. Kiesel, A. Renz, F. Hasselbach. Observation of Hanbury Brown-Twiss anticorrelations for free electrons. Nature, 418, 392-394(2002).

    [20] S. Gan, D. Z. Cao, K. Wang. Dark quantum imaging with fermions. Phys. Rev. A, 80, 043809(2009).

    [21] H. J. Kimble, M. Dagenais, L. Mandel. Photon antibunching in resonance fluorescence. Phys. Rev. Lett., 39, 691-695(1977).

    [22] P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto. Quantum correlation among photons from a single quantum dot at room temperature. Nature, 406, 968-970(2000).

    [23] R. Boddeda, Q. Glorieux, A. Bramati, S. Pigeon. Generating strong anti-bunching by interfering nonclassical and classical states of light. J. Phys. B, 52, 215401(2019).

    [24] I. Starshynov, A. M. Paniagua-Diaz, N. Fayard, A. Goetschy, R. Pierrat, R. Carminati, J. Bertolotti. Non-Gaussian correlations between reflected and transmitted intensity patterns emerging from opaque disordered media. Phys. Rev. X, 8, 021041(2018).

    [25] A. M. Paniagua-Diaz, I. Starshynov, N. Fayard, A. Goetschy, R. Pierrat, R. Carminati, J. Bertolotti. Blind ghost imaging. Optica, 6, 460-464(2019).

    [26] T. Grujic, S. R. Clark, D. Jaksch, D. G. Angelakis. Repulsively induced photon superbunching in driven resonator arrays. Phys. Rev. A, 87, 053846(2013).

    [27] Z. Ficek. Highly directional photon superbunching from a few-atom chain of emitters. Phys. Rev. A, 98, 063824(2018).

    [28] M. Marconi, J. Javaloyes, P. Hamel, F. Raineri, A. Levenson, A. M. Yacomotti. Far-from-equilibrium route to superthermal light in bimodal nanolasers. Phys. Rev. X, 8, 011013(2018).

    [29] C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, K. Kern. Photon superbunching from a generic tunnel junction. Sci. Adv., 5, eaav4986(2019).

    [30] Y. Zhou, F. L. Li, B. Bai, H. Chen, J. Liu, Z. Xu, H. Zheng. Superbunching pseudothermal light. Phys. Rev. A, 95, 053809(2017).

    [31] L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, G. Zhang. Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front. Phys. Rev. A, 99, 063827(2019).

    [32] F. Gori, M. Santarsiero. Spatial superbunching of light: model sources. Opt. Lett., 44, 4012-4015(2019).

    [33] N. Bender, H. Yılmaz, Y. Bromberg, H. Cao. Creating and controlling complex light. APL Photonics, 4, 110806(2019).

    [34] A. Roy, M. M. Brundavanam. Polarization-based intensity correlation of a depolarized speckle pattern. Opt. Lett., 46, 4896-4899(2021).

    [35] C. Q. Wei, J. B. Liu, X. X. Zhang, R. Zhuang, Y. Zhou, H. Chen, Y. C. He, H. B. Zheng, Z. Xu. Non-Rayleigh photon statistics of superbunching pseudothermal light. Chin. Phys. B, 31, 024209(2022).

    [36] I. Straka, J. Mika, M. Ježek. Generator of arbitrary classical photon statistics. Opt. Express, 26, 8998-9010(2018).

    [37] M. Blazek, W. Elsäßer. Coherent and thermal light: tunable hybrid states with second-order coherence without first-order coherence. Phys. Rev. A, 84, 063840(2011).

    [38] H. E. Kondakci, A. Szameit, A. F. Abouraddy, D. N. Christodoulides, B. E. A. Saleh. Sub-thermal to super-thermal light statistics from a disordered lattice via deterministic control of excitation symmetry. Optica, 3, 477-482(2016).

    [39] S. Zhang, H. Zheng, G. Wang, J. Liu, S. Luo, Y. He, Y. Zhou, H. Chen, Z. Xu. Controllable superbunching effect from four-wave mixing process in atomic vapor. Opt. Express, 28, 21489-21498(2020).

    [40] X. F. Liu, X. H. Chen, X. R. Yao, W. K. Yu, G. J. Zhai, L. A. Wu. Lensless ghost imaging with sunlight. Opt. Lett., 39, 2314-2317(2014).

    [41] A. Shevchenko, T. Setälä, M. Kaivola, A. T. Friberg. Characterization of polarization fluctuations in random electromagnetic beams. New J. Phys., 11, 073004(2009).

    [42] T. Shirai, E. Wolf. Correlations between intensity fluctuations in stochastic electromagnetic beams of any state of coherence and polarization. Opt. Commun., 272, 289-292(2007).

    [43] X. Liu, G. Wu, X. Pang, D. Kuebel, T. D. Visser. Polarization and coherence in the Hanbury Brown-Twiss effect. J. Mod. Opt., 65, 1437-1441(2018).

    [44] D. Kuebel, T. D. Visser. Generalized Hanbury Brown-Twiss effect for Stokes parameters. J. Opt. Soc. Am. A, 36, 362-367(2019).

    [45] G. Wu, D. Kuebel, T. D. Visser. Generalized Hanbury Brown-Twiss effect in partially coherent electromagnetic beams. Phys. Rev. A, 99, 033846(2019).

    [46] O. Korotkova, Y. Ata. Electromagnetic Hanbury Brown and Twiss effect in atmospheric turbulence. Photonics, 8, 186(2021).

    [47] C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte. Tailoring of arbitrary optical vector beams. New J. Phys., 9, 78(2007).

    [48] D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, J. Leach. Independent polarisation control of multiple optical traps. Opt. Express, 16, 15897-15902(2008).

    [49] A. Shevchenko, M. Roussey, A. T. Friberg, T. Setälä. Polarization time of unpolarized light. Optica, 4, 64-70(2017).

    [50] M. Born, E. Wolf. Principles of Optics, 32(1999).

    [51] K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd. High-order thermal ghost imaging. Opt. Lett., 34, 3343-3345(2009).

    [52] M. P. Rowe, E. N. Pugh, J. S. Tyo, N. Engheta. Polarization-difference imaging: a biologically inspired technique for observation through scattering media. Opt. Lett., 20, 608-610(1995).

    [53] H. Defienne, B. Ndagano, A. Lyons, D. Faccio. Polarization entanglement-enabled quantum holography. Nat. Phys., 17, 591-597(2021).

    [54] E. E. Gorodnichev, A. I. Kuzovlev, D. B. Rogozkin. Impact of wave polarization on long-range intensity correlations in a disordered medium. J. Opt. Soc. Am. A, 33, 95-106(2016).

    [55] Z. Jiang, Z. Wang, K. Cheng, T. Wang. Correlation between intensity fluctuations and degree of cross-polarization of light waves on scattering. Optik, 198, 163308(2019).

    Zhiyuan Ye, Hai-Bo Wang, Jun Xiong, Kaige Wang. Antibunching and superbunching photon correlations in pseudo-natural light[J]. Photonics Research, 2022, 10(3): 668
    Download Citation