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Since Hanbury Brown and Twiss revealed the photon bunching effect of a thermal light source in 1956, almost all
studies in correlation optics have been based on light’s intensity fluctuation, regardless of fact that the polari-
zation fluctuation is a basic attribute of natural light. In this work, we uncover the veil of the polarization fluc-
tuation and corresponding photon correlations by proposing a new light source model, termed pseudo-natural
light, embodying both intensity and polarization fluctuations. Unexpectedly, the strong antibunching and super-
bunching effects can be simultaneously realized in such a new source, whose second-order correlation coefficient
g �2� can be continuously modulated across 1. For the symmetric Bernoulli distribution of the polarization fluc-
tuation, particularly, g �2� can be in principle from 0 to unlimitedly large. In pseudo-natural light, while the
bunching effects of both intensity and polarization fluctuations enhance the bunching to superbunching photon
correlation, the antibunching correlation of the polarization fluctuation can also be extracted through the
procedure of division operation in the experiment. The antibunching effect and the combination with the bunch-
ing one will arouse new applications in quantum imaging. As heuristic examples, we carry out high-quality
positive or negative ghost imaging, and devise high-efficiency polarization-sensitive and edge-enhanced imaging.
This work, therefore, sheds light on the development of multiple and broad correlation functions for natural
light. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.446935

1. INTRODUCTION

In 1956, Hanbury Brown and Twiss (HBT) [1,2] proposed an
intensity interferometer to measure the angular diameter of a
star. The star light as natural light obeys the photon statistics of
a thermal light field, i.e., the bunching correlation for bosons,
where the second-order correlation coefficient g �2� of the opti-
cal field follows 1 < g �2� ≤ 2. The photon bunching in inten-
sity correlation affords the coherence information of remote star
light in an HBT intensity interferometer. Since the beginning
of this century, the bunching correlation in thermal light has
had many applications in a nonlocal imaging technique, such as
ghost imaging (GI), ghost interference, and subwavelength in-
terference [3–15]. Especially, the GI technique has made wide-
spread attention and revolutionary progress in the past decade.
In these applications, most experiments employ the pseudo-
thermal light source [16], which has a similar statistical corre-
lation to the true thermal light but possesses a very slow tem-
poral response.

Due to the Pauli exclusive principle and Fermi–Dirac sta-
tistics, fermions in a thermal source can manifest antibunching
effect with 0 ≤ g �2� < 1 [17–19]. Gan et al. [20] proposed a
scheme of magnifying GI of an electron microscope and

pointed out that quantum imaging with thermal fermions
can construct dark patterns against a bright intensity back-
ground. The dark image (or negative image) by antibunching
correlation may increase the visibility perfectly against the
maximum visibility of one-third for the positive GI by the
bunching correlation of thermal photons. As for photons, how-
ever, the antibunching phenomenon is usually regarded as a
signature of nonclassical light [21–23], such as the photon
number state. This distinguishing feature highlights the quan-
tum nature of fermions without classical analog. It is worth not-
ing that the classical anticorrelation phenomena can occur
between reflected and transmitted speckle patterns from
opaque disordered media [24,25], but the antibunching effect
is very weak. On the other hand, the photon superbunching
effect is meant for g�2� > 2, and it can also improve the visibil-
ity and resolution of GI. This effect can be carried out by non-
linear interaction between light and atoms [26–29]. Recently,
some simple and practical superbunching schemes for classical
light were reported and can be applied to GI in the temporal
domain [30] or in the spatial domain [31,32], and notably,
these effects in classical regimes can be well interpreted by
means of the speckle’s non-Rayleigh statistics [33–35] in either
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the temporal or spatial domain. Also, some schemes have been
proposed to generate a g �2�-switchable light source in the tem-
poral domain [36] or in the spatial domain from coherent to
thermal [37], from subthermal to superthermal [38], and con-
trollable superthermal [39].

In conventional optical imaging, the most popular light
sources come from natural sunlight. When sunlight is applied
to GI, the main obstacle is its fast temporal fluctuation in the
face of present, relatively slower response detectors. Liu et al.
[40] performed the first experiment with lensless GI with sun-
light, taking a step toward the practical application of natural
light in GI. Natural light might contain both intensity fluc-
tuation (IF) and polarization fluctuation (PF) [41], and several
interesting models for the generalized HBT effect [42–46] with
a random vector field have been proposed. To our knowledge,
however, most studies in correlation optics and imaging appli-
cations are based on light’s IF regardless of PF. In this work, we
propose a simple scheme to exploit both antibunching and
superbunching effects for PF in classical light. For the symmet-
ric Bernoulli distribution of PF in coherent light, the spectrum
of g �2� can be considerably broad, from zero for antibunching
and unlimitedly large for superbunching. Similar to pseudo-
thermal light, we introduce a pseudo-natural light source in
which polarized pseudo-thermal light passes through a liquid
crystal spatial light modulator (SLM) [47,48] to acquire inde-
pendent IF and PF with much slower coherence time in com-
parison with polarization time of natural light [49]. In the
pseudo-natural light model, the positive correlations of the
IF and PF can be enhanced with each other to supercorrelation.
However, the anticorrelation of PF can be extracted from the
mixed correlations of PF and IF. Using the pseudo-natural light
source, we perform high-quality positive and negative GI and
carry out other relevant applications in the experiments.

2. THEORY

Considering a polarized beam of intensity I S passing through a
polarizing beam splitter (PBS), as shown in Fig. 1(a), the inten-
sities of two outgoing beams are given by I x � pIS and
I y � �1 − p�I S , where p ∈ �0,1� is a parameter related to the
polarization state of the input beam. When input beam has
the PF, p becomes a random variable. We first consider the
case when the input intensity I S is fixed, such as a laser beam.
Due to the PF of the input beam, the two outgoing beams from
PBS have the IF with g �2�I x � g �2�p � 1� σ2p∕μ2p and g�2�I y �
g �2�1−p � 1� σ2p∕�1 − μp�2, where we define g �2�I � hI 2i∕hIi2 �
1� σ2I∕μ2I with the mean value μI � hIi and variance
σ2I � hI 2i − hIi2 for the random variable I . However, the
cross-correlation function between the two outgoing beams
is given by

g �2�I x I y �
hI xI yi
hI xihI yi

� g �2�p�1−p� � 1 −
σ2p

μp�1 − μp�
: (1)

Since 0 ≤ g�2�p�1−p� < 1, the intensity-stable beam with the PF
possesses the antibunching effect. When the horizontal and
vertical polarization components balance out in the PF,
i.e., μp � 1∕2, we get g �2�p � g �2�1−p and g �2�p � g�2�p�1−p� � 2.

To be clear, we show two examples. (i) Random linearly po-
larized light with polarization angle θ, which is uniformly dis-
tributed in �0, π�. We have p � cos2 θ, μp � 1∕2, hp2i � 3∕8,
σ2p � 1∕8, and obtain g �2�p � g �2�1−p � 3∕2 and g �2�p�1−p� � 1∕2.
(ii) Linearly polarized light with only two polarization angles,
i.e., a Bernoulli distribution. The probability function for ran-

dom variable p is P�p� �
�

c, p � p1
1 − c, p � p2

, where 0 < c < 1

and p1 ≠ p2. We can calculate μp � p1c � p2�1 − c�,
hp2i � p21c � p22�1 − c�, σ2p � c�1 − c��p1 − p2�2, and accord-

ingly, g �2�p , g�2�1−p, and g
�2�
p�1−p�. For example, in the symmetric con-

figuration of p1 � p2 � 1, we have μp � p1c � �1 − p1��1 − c�
and σ2p � c�1 − c��2p1 − 1�2. Especially if the beam contains
only horizontal and vertical polarization states, we obtain
g �2�p � 1∕c, g �2�1−p � 1∕�1 − c�, and g �2�p�1−p� � 0. The minimum
antibunching effect is realized, since in this case every photon
chooses only one way in the PBS with certainty. However, the
maximum superbunching effect (g�2�p or g �2�1−p) can be unlimit-
edly large as c is close to 0 or 1.

A general polarization state of monochromatic plane wave can
be described by the Stokes vector on the Poincaré sphere [50],

0
BB@

S0
S1
S2
S3

1
CCA � I S

0
BB@

1
cos�2χ� cos�2ψ�
cos�2χ� sin�2ψ�

sin�2χ�

1
CCA, (2)

Fig. 1. (a) Schematic diagram of the PBS model: two CMOS-based
image sensors (detectors) for recording intensity correlation. When the
detector in the black-dotted box is replaced with an object and a
bucket detector, the setup can facilitate GI experiments. A program-
mable SLM is utilized to generate the PF of the wavefront with adjust-
able coherence time. A 4-f lens system (not shown) is used to image the
SLM plane onto the detection plane. (b) Schematic diagram of GI for
pseudo-natural light: an ordinary BS is introduced to obtain additional
reference beam for division and subtraction operations. P, linear polar-
izer; HWP, half-wave plate; L, lens; RGG, rotating ground glass.
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where ψ (0 ≤ ψ ≤ π) specifies the orientation and χ
(−π∕4 ≤ χ ≤ π∕4) characterizes the ellipticity of the polariza-
tion ellipse, while 2χ and 2ψ stand for the spherical angular co-
ordinates of latitude and longitude, respectively. When the
intensity of a plane wave is given, S0 � I S ; thus, it has defined
the radius of the Poincaré sphere. The probability function
P�2χ; 2ψ� on the Poincaré sphere can describe the PF.
Because of S1 � I x − I y � �2p − 1�I S , it has p �
�cos 2χ cos 2ψ � 1�∕2. As a result, we can calculate hpi,
hp2i on the Poincaré sphere, and the corresponding second-order
correlation functions. For example, for the uniform probability
distribution on the Poincaré sphere P�2χ, 2ψ� � 1∕4π, we have
μp � 1∕2, σ2p � 1∕12, g �2�p � g �2�1−p � 4∕3, and g �2�p�1−p� � 2∕3.

Both bunching and antibunching effects coexist, and g �2�p �
g �2�p�1−p� � 2. As for the case of random circularly polarized light,
which has only left-handed and right-handed states (the north
pole and south pole on the Poincaré sphere), the IF will not exist
after passing through a PBS. To gain the IF, however, one can
introduce a quarter-wave plate in front of the PBS.

We now consider the case in which the beam of intensity IS
contains both IF and PF, which are independent of each other,
possibly similar to some of natural light. When the beam im-
pinges on a PBS, three second-order correlation coefficients of
two outgoing beams are obtained to be

g �2�I x � g �2�I S g
�2�
p ,

g �2�I y � g �2�I S g
�2�
1−p,

g �2�I x I y � g �2�I S g
�2�
p�1−p�: (3)

The intensity correlation functions of outgoing beams from
the PBS can be factorized according to independent IF and PF.
Since g�2�I S , g

�2�
p , and g �2�1−p are positive correlation functions

(g�2� > 1), g �2�I x and g �2�I y are also positive correlation ones, pos-

sibly superbunching. However, g�2�p�1−p� is an anticorrelation one

(g�2� < 1), so the cross-intensity correlation g �2�I x I y may be pos-
itive or anticorrelation, depending on the competition between
two opposite correlations. Hence, in the PBS scheme, the IF of
the input beam enhances the positive correlation of each polari-
zation mode while counteracting the anticorrelation between
two polarization modes. It would be an obstacle to gain the
antibunching effect for natural light.

To surpass the obstacle, we propose a scheme of combina-
tion of a beam splitter (BS) and a PBS in Fig. 1(b). The pseudo-
natural light is divided into two parts after the BS with the
intensities I S1 � tI S and I S2 � rI S , where t and r are the
transmissivity and the reflectivity of the BS, respectively.
After the PBS, the intensities of the two outgoing beams for
the horizontal and vertical polarization modes are written as
I x � pIS1 � ptI S and I y � �1 − p�I S1 � �1 − p�tI S . It is clear
that the second-order correlation functions of I x and I y follow
Eq. (3) because of g�2�I S1

� g�2�I S
.

We now perform some basic operations between the ran-
dom variables I S2 and I x (I y). First, we define the division op-
erations px≡I x∕I S2��t∕r�p and py ≡ I y∕IS2 � �t∕r��1 − p�,

so the random intensity of the carrier beam has been elimi-
nated. Thus we obtain

g �2�pxI x
� g�2�px � g �2�p ,

g �2�pyI y
� g�2�py � g �2�1−p,

g�2�pxI y
� g�2�I xpy

� g �2�pxpy � g �2�p�1−p�: (4)

As a result, all the correlation functions related to the PF
only have been extracted. Second, we introduce the subtraction
operations I S2 − I x � �r − pt�I S and IS2−I y��r −�1−p�t �I S ,
and calculate the cross-correlation functions,

g �2��IS2−I x�I y �
�1 − 2t��1 − hpi� � th�1 − p�2i
�1 − 2t��1 − hpi� � th�1 − p�i2 g

�2�
I S ,

g �2��IS2−I y�I x �
�1 − 2t�hpi � thp2i
�1 − 2t�hpi � thpi2 g

�2�
IS , (5)

where the lossless BS condition r � t � 1 has been applied.
For a balanced lossless BS, we arrive at

g �2��I S2−I x�I y � g �2�1−pg
�2�
I S , g �2��IS2−I y�I x � g�2�p g�2�I S : (6)

The results are exactly the same as the first two equations in
Eq. (3), but here the cross-correlations of two polarization
modes replace the autocorrelations of each polarization mode.
Since two correlated beams are ready, the present method is
convenient for GI performance.

3. RESULTS

A. Experimental Observations of Antibunching and
Superbunching
In the experimental performance, we discuss three cases for the
PF of the Bernoulli distribution with the symmetrical polari-
zation configuration p1 � p2 � 1 (see the experimental calibra-
tion of the SLM in Appendix A.1). In Case 1 and Case 2,
coherent light and pseudo-thermal light drive the SLM, respec-
tively; then these beams are injected onto a PBS, shown in
Fig. 1(a). In Case 3, however, pseudo-thermal light drives the
SLM to form pseudo-natural light with independent IF and PF
as Case 2; then pseudo-natural light impinges on a BS and fol-
lows the PBS, shown in Fig. 1(b). We measure the second-
order correlation coefficients as functions of p1 and c in Fig. 2.

For Case 1, when the coherent light drives the SLM, we can
observe g �2�p , g �2�1−p, and g�2�p�1−p� of PF directly in Figs. 2(a1) and
2(a2). In Fig. 2(a1) [also Figs. 2(b1) and 2(c1)], the probability
of two polarization modes is balanced as c � 1∕2. The
experimental results demonstrate the positive correlation
g �2�p � g �2�1−p > 1 and anticorrelation g �2�p�1−p� < 1 (from 0.25

to 0.99), approximately satisfying g�2�p � g �2�p�1−p� � 2. In
Fig. 2(a2) [also Figs. 2(b2) and 2(c2)], the maximum linear
polarization parameter p1 � 0.94 in the SLM is taken; then
we have the minimum anticorrelation g �2�p�1−p� � 0.25� 0.03
at c � 1∕2. However, larger positive correlation coefficients
(superbunching effect) for each outgoing polarization mode
g �2�p � 5� 0.6 and g �2�1−p � 4.3� 0.5 are generated for
c � 0.94 and 0.06, respectively.

For Case 2 we measure g �2�I x , g
�2�
I y , and g �2�I x I y for pseudo-

natural light in Figs. 2(b1) and 2(b2). These second-order
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correlation coefficients are similar to g �2�p , g �2�1−p, and g �2�p�1−p� in
Figs. 2(a1) and 2(a2) but enhanced by g �2�I S � 1.6� 0.1 due
to Eq. (3). As a result, the enhanced superbunching effect
can be observed with the maximum values of 10.3 and 8.1 at
c � 0.94 and 0.06, respectively. However, the cross-correlation
coefficient g �2�I x I y varies from 0.38 to 1.64 in Fig. 2(b1), i.e., from
anticorrelation to positive correlation, against the whole anti-
correlation in Case 1.

For Case 3, by combination of an ordinary BS and a PBS in
Fig. 1(b), we perform the division operation and subtraction
operation mentioned above to obtain the original antibunching
correlation of PF and superbunching correlation of both IF and
PF, respectively. By the division operation, g�2�pxI y

and g �2�I xpy
are

measured in the range of 0.31–1.21 with respect to the range of
0.38–1.64 for g �2�I x I y [see lower part in Fig. 2(c1)]. Since very
small intensities will give incorrect results, these records have
to be deleted in the division. For this reason, the IF is partly
eliminated. As seen in Fig. 2(c2), by the subtraction operation
the superbunching effect can be realized with the maximum
records of 8.3 and 6.0 at c � 0.94 and 0.08, respectively.

In the experiment, the values of p are limited by the SLM and
PBS in the range �0.06, 0.94� (see Appendix A.1 for the exper-
imental calibration of the SLM and error analysis). So, we can
observe the second-order correlation coefficients ranging from a
minimum of 0.25 to a maximum of 10.3. Hence, this simple
setup can be viewed as a special light source with tunable photon
correlation from antibunching to superbunching.

B. Positive and Negative Ghost Images
Next, we observe HBT curves and perform GI experiments. As
shown in Fig. 1, the detector in the dotted box is replaced with
an object and a bucket detector. The experimental results are
presented in Figs. 3 and 4. We first consider the PF source
driven by coherent light. For the symmetric Bernoulli distribu-
tion (p1 � 0.94, c � 0.5) and uniform distribution of PF, the
antibunching HBT curves with the minimum g �2�I x I y � 0.26
and 0.54 are plotted in Figs. 3(a1) and 3(a2), respectively.
As a result, we observe dark ghost images in Figs. 3(b1) and
3(b2) with much better contrast-to-noise ratio (CNR, also
see Eqs. (A2) and (A3) in Appendix A.4) [51].

In Fig. 4, pseudo-natural light is formed with the symmetric
Bernoulli distribution of PF driven by pseudo-thermal light.
We consider two cases: (p1 � 0.94, c � 0.94) in Figs. 4(a1)
and 4(b1) and (p1 � 0.94, c � 0.5) in Figs. 4(a2) and 4(b2).
For the former, we perform the subtraction operation and ob-
serve the significant superbunching effect (g �2� � 8.43). As for
the latter, we perform the division operation and extract the
antibunching effect of PF (g �2� � 0.32). Hence the corre-
sponding positive image in Fig. 4(b1) and negative image in
Fig. 4(b2) have much better CNRs.

C. Polarization-Sensitive GI
The combination of two opposite photon correlations can find
a variety of applications. Here we demonstrate polarization-
sensitive imaging as getting started, which is developed to

Fig. 2. Second-order correlation coefficients as functions of p1 and c for the symmetric Bernoulli distribution of PF. Case 1, coherent light with
PF. (a1) Antibunching and bunching effects are exhibited in cross- and autocorrelation coefficients satisfying g �2�p � g �2�p�1−p� ≈ 2; (a2) superbunching
and antibunching effects can be observed with some values of c. Case 2 and Case 3, pseudo-thermal light with PF. (b1) and (b2) With the in-
troduction of a statistically independent IF source, i.e., pseudo-thermal light, all the second-order correlation coefficients are multiplied by the
second-order correlation coefficients of g �2�IS , such that the superbunching is enhanced but the antibunching is weakened or even disappears.
As a result, the cross-correlation coefficient of pseudo-thermal light is neither too high nor too low. To overcome this obstacle, division and sub-
traction are performed to gain anticorrelation and supercorrelation in (c1) and (c2) according to setup of Fig. 1(b). Note that (a1), (b1), and (c1)
share the same abscissa with c fixed as 0.5, while (a2), (b2), and (c2) share the same abscissa with p1 fixed as 0.94. Also see the experimental
calibration of the SLM in Appendix A.1.
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enhance the visibility of targets in scattering media [52]. As
shown in Fig. 5(a), IA and IB are intensities of two independent
light sources A and B with IF and PF, respectively. Beam A is
linearly polarized with a solid angle oriented at 45°. Two beams
are mixed in a PBS to generate a hybrid illumination. The tar-
gets are now polarized—two letters have orthogonal polariza-
tion. When source B (A) is turned off, the positive (negative)
image appears for the horizontally (vertically) polarized letter, as
shown in Fig. 5(b1) [Fig. 5(b2)], which is also illustrated by the
inset table in Fig. 5(a). For the hybrid illumination, however,
two letters appear simultaneously and identifiably in Fig. 5(b3)
with diametrically opposite intensity below and above the back-
ground. This feature is superior to the common scheme of
polarization-sensitive imaging. Also see Appendix A.3 for more
experimental details. It is worth noting that the present scheme
can achieve resolution-enhanced measurement of polarization-
sensitive phase objects, just like the recent work on polarization

entanglement-enabled quantum holography, proposed by
Defienne et al. [53].

D. Customization of the Spatial Pattern of Second-
Order Correlation Functions
In general, the combination of classical spatial antibunching
and bunching effects also provides an alternative toolbox for
the customization of the second-order correlation functions.
For example, the second-order correlation coefficient can be
continuously adjustable in a wide range across 1, which has
been shown in Fig. 2. Also, the spatial structure of the

Fig. 3. HBT curves of bunching and antibunching effects and corresponding GIs for different fluctuation sources. (a1) and (b1) Symmetric
Bernoulli distribution of PF (p1 � 0.94, c � 0.5); (a2) and (b2) uniform distribution of PF; (c1) and (d1) linearly polarized pseudo-thermal light of
IF; (c2)–(c4) and (d2)–(d4) pseudo-natural light with both IF and PF (uniform distribution), where, in (c3) and (d3) division is performed, and in
(c4) and (d4) subtraction is performed. 3000 shots contribute to each image, and scale bar is 1 mm, similarly hereinafter.

Fig. 4. Same as Fig. 3. The sources are pseudo-natural light with
both IF and PF (symmetric Bernoulli distribution), where, in (a1)
and (b1) p1 � 0.94, c � 0.94, subtraction is performed; in (a2)
and (b2) p1 � 0.94, c � 0.5, division is performed.

Fig. 5. (a) Schematic diagram of GI with polarization identification.
(b1) Positive image with IA only; (b2) negative image with IB only;
(b3) polarization-sensitive image with both IA and IB . See Appendix
A.3 for more experimental details.
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second-order correlation function can be tailored based on the
opposite spatial correlation distributions.

The schematic diagram of the second example is shown in
Fig. 6, which is very similar to Fig. 5(a), but the two beams
corresponding to independent IF and PF sources are offset
by an adjustable mirror. Figure 7(a) shows the simulation object
(256 × 256 pixels). The size of the speckle unit, i.e., the half-
height width of the second-order correlation function, is set to
∼6 pixels. First, we introduce the customization of a hollow-
like pattern of the second-order correlation function shown in

Fig. 7(b1): no offset, but the size of the speckle unit of the IF
source is increased to ∼9 pixels. As a result, the central area of
the second-order correlation function is about 1, while the sur-
rounding region is larger than 1, and a fuzzy positive image is
shown in Fig. 7(c1).

Then we introduce the offset of six pixels between the two
beams. Two spots with a peak and a dip in the second-order
correlation functions are formed with different directions
[Figs. 7(b2)–7(b4)] by adjusting the angle of the mirror.
With these tailored second-order correlation functions, we
can observe the various reconstructed images [Figs. 7(c2)–
7(c4)] with edges enhanced at corresponding directions. For
comparisons of edge quality, Figs. 7(d1)–7(d4) show one-di-
mensional (1D) profiles of images in the direction of the cor-
responding arrow. Hence, the introduction of PF has expanded
more unexpected possibilities for GI applications.

4. CONCLUSION

In summary, we have demonstrated antibunching and super-
bunching effects in the PF of classical light and applied them
to high-quality positive and negative GI, and proposed two ap-
plication examples. Usually either the superbunching effect or
the anti-bunching effect can be found in some quantum optical
systems. Our model is completely limited in the scope of
classical optics but covers both superbunching and antibunch-
ing effects. The present scheme is very simple and significantly
effective for a special light source with a multiple and broad
correlation property. At present, however, while pseudo-
thermal light with IF only is still the most popular source in
correlation optics, our work affords an alternative choice with
enhancements. Sunlight offers humans a visible world free of
charge. As natural sunlight contains both IF and PF, our work
also opens the way for wide applications for natural light.

Fig. 6. Schematic diagram of the customization of second-order cor-
relation functions. Similar to Fig. 5, two independent fluctuation
sources are combined. The difference is that an asymmetric offset
is introduced in the PF path, which can be achieved by adjusting
the angle of a mirror.

Fig. 7. Customization of various unique second-order correlation functions or point spread functions of the GI system. (a) Simulation object;
(b1) hollow-like pattern; and (b2)–(b4) peak dip-like patterns with different directions by changing the angle of the mirror in Fig. 6. Note that only
the middle area (96 × 96 pixels) is displayed in (b1)–(b4), where green lines are 1D distributions with the directions indicated by corresponding
green arrows. (c1)–(c4) Simulation imaging results corresponding to different point spread functions; 500,000 shots contribute to each image.
(d1)–(d4) Corresponding 1D profiles of images with the directions indicated by corresponding green arrows. The horizontal and longitudinal
coordinates in (d1)–(d4) are pixel position and normalized intensity, respectively. For comparison, the solid line and the dashed line represent
the edge-enhanced image and the original one, respectively.
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APPENDIX A

1. Experimental Calibration of the SLM
The coherent beam in this experiment comes from a continu-
ous semiconductor laser (Laserwave, LWGL532 160105) with
a center wavelength of 532 nm, and the actual optical power is
approximately 160 mW. A transmissive SLM (Daheng Optics,
GCI-77) is utilized to generate the PF, so we can artificially
preload the profile on the SLM to modulate the polarization
distribution of the wavefront. The coherence time of the
PFs of this light source is slow enough such that we can easily
observe the antibunching effect with CMOS-based detectors
(Sony, IMX226; DAHENG IMAGING, MER-133-
54U3M), whose detecting signal-to-noise ratio is 37.79 dB
and quantum efficiency is ∼64% at 532 nm. The maximum
resolution of the profile loaded on the SLM is 768 × 1024 pix-
els with the pixel size of 26 μm, and the value range of the
parameter k of each pixel unit is [0, 1], which directly modu-
lates the phase and polarization of the wavefront simultane-
ously. To avoid the influence of the wavefront phase
fluctuation on the IF, an optical 4f system is used to image
the SLM plane onto the detection plane. Figure 8 shows the
experimental calibration between k and the light intensity of
I x , I y, and I S (IS � I x � I y) using two photodetectors
(Thorlabs, PDA100A2), in which all the pixel values of the
SLM are set to k, and different k result in different splitting
ratios of the PBS. Then the relationship between k and p
can be obtained. The green translucent region in Fig. 8 can
be approximately regarded as a symmetrical region (k ranges
from 0.34 to 1, while p varies from 0.06 to 0.94), approxi-
mately satisfying p1 � p2 � 1. For the sake of simplicity,
the independent variable k is taken in the translucent green
area regardless of the setting of the Bernoulli distribution or
the uniform distribution. Considering the input light is

monochromatic and linearly polarized, this programmable
SLM mainly generates a random linearly polarized wavefront
modulation with the polarization angle approximately in the
range of [16°, 74°] for this selected symmetrical region.
Also, the asymmetry of g�2�p and g �2�1−p in Fig. 8 is mainly caused
by the asymmetry of I x (p1) and I y (p2). In the second-order
correlation coefficient measurements (corresponding to Fig. 2),
we combine 32 × 32 pixels into an independent unit, whose
parameter k obeys a certain statistical distribution, while in
GI experiments (corresponding to Figs. 3–5), we set the size
of a single unit to be 7 × 7 pixels, which determines the spatial
resolution. The CMOS-based detector only reads out total
light intensity functions as well as the bucket detector in the
GI experiments. Whether in the second-order correlation co-
efficient measurement or in the GI experiments, only 3000
shots are applied.

The theory emphasizes that the theoretical ideal value of the
antibunching effect under this PBS model can reach 0, but the
lowest value measured by the experiment is only 0.25 since p
cannot take all values in [0,1]. The value of p is limited by the
extinction ratio of the PBS, the modulation accuracy and depth
of the SLM, and the inevitable dark current and readout noise
of the detector. Figure 9(b) plots measurement data with 800
profiles that obey the Bernoulli distribution. As we can see, IS is
not a fixed value at experiment, whereas the input is stable co-
herent light, which is believed to be caused by the dark current
of the CMOS image sensor. Also, the process of the SLM
switching between two profiles may sometimes have a much
slower response or a failure event, which causes the few data
in Fig. 9(b) to significantly deviate from the expected fluc-
tuation range. Besides, the grating structure inside the SLM
will also have a negative impact on the measurement.
Figures 10(a) and 10(b) show the speckle patterns without
and with passing through the SLM. Note that the SLM is
not activated at this time, and the 4f system is used. The in-
ternal grating structure will be mapped out in the speckle pat-
tern in Fig. 10(b), which will inevitably lead to cross talk
between pixel units, especially when higher spatial resolution
is required. These factors will comprehensively affect the exper-
imental measurement and might eventually lead to deviations
from theory and experiment. In general, one can choose more
precise devices to enhance the antibunching effect, even close
to 0.

Fig. 8. Experimental calibration of SLM. (a) Relationship between
the parameter k loaded on the SLM and the light intensity of I x , I y ,
and IS (I S � I x � I y) using two photodetectors. The green translu-
cent region in (b) can be approximately regarded as a symmetrical re-
gion (k ranges from 0.34 to 1 while p varies from 0.06 to 0.94,
approximately).

Fig. 9. Raw measurement data of 800 shots that obey the Bernoulli
distribution in the second-order correlation coefficient measurement.
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2. Experimental Details of Pseudo-Natural Light
Generation
In the pseudo-natural light model [Case 2 in Fig. 1(a)], the PF
is generated by a transmissive SLM experimentally while the IF
comes from a pseudo-thermal light source, i.e., a laser beam
passes through an unknown rotating ground glass (RGG) disk.
Although the statistical correlation or independence [49,54,55]
between IF and PF in a genuine natural light source is not
clear, the two statistical sources in this work are irrelevant physi-
cally. In the imaging system, however, the random speckles do
not interfere with each other, and the statistical behavior can be
maintained.

In Figs. 2(b1) and 2(b2), we have experimentally verified the
strong anticorrelation function, g �2�p�1−p�, and the supercorrela-

tion function g�2�p (g�2�1−p) in pseudo-natural light. Admittedly,
the superbunching effect realized in the pseudo-natural light
can be also viewed as a special case of a type of non-
Rayleigh speckle’s generation akin to Refs. [30–35]. As evi-
dence, Figures 11(a) and 11(b) show the probability density

functions (PDFs) of pseudo-natural light in the spatial domain
and temporal domain, respectively, in comparison with stan-
dard Rayleigh distribution. Two kinds of pseudo-natural light
with uniform distribution and Bernoulli distribution
(p1 � 0.94, c � 0.5) are taken into account. The experimental
results have demonstrated the non-Rayleigh distribution for the
superbunching effect in pseudo-natural light, and the spatial
and temporal PDFs are very similar.

The intensity contrast of speckles is defined as
CS �

ffiffiffiffi
D

p
∕hIi, where D and hIi are the speckle’s variance

and intensity average, respectively. CS � 1 generally stands
for Rayleigh speckles. Here, we experimentally measured the
intensity contrasts for the pseudo-natural light above. For
the pseudo-natural light with linear PF that obeys uniform dis-
tribution, we obtain CS � 1.10 and 1.14 for the spatial and
temporal domains, respectively; accordingly, for the
Bernoulli distribution of two polarization angles (p1 � 0.94,
c � 0.5), we obtain CS � 1.34 and 1.28. Therefore, the
superbunching effect in pseudo-natural light generates non-
Rayleigh distribution of speckles.

3. Experimental Details of Polarization-Sensitive GI
The simplified schematic diagram of polarization-sensitive GI is
present in Fig. 5(a). Notably, the IF source is not pseudo-
thermal light but is generated by an SLM and a polarizer, whose
second-order correlation coefficient is identical with g �2�p or
g �2�1−p, shown in Section 2. On the other hand, the second-order
correlation coefficient of the PF source is the same as g�2�p�1−p�.
When the two independent sources are incoherently superim-
posed according to the intensity ratio q, i.e., q � IB∕IA, the
second-order correlation function of the mixed illumination
can be expressed as

g �2� �
g �2�p � q2g�2�p�1−p� � 2q

�1� q�2 , (A1)

whose value ranges from g �2�p�1−p� (minimum) to g �2�p
(maximum).

Specifically, in the experimental setup in Fig. 12(a), an ex-
panded coherent light is input as the source, and a mask with
two rectangular holes divides the expanded coherent light into
two separate areas illuminating the SLM. A prism separates the
two light fields, and a PBS superimposes the two light fields
incoherently. So, it is convenient to adjust the fluctuation
characteristics and the unit size of speckle of IF and PF sources.

Fig. 10. Raw speckle patterns of pseudo-thermal light. (a) Without
and (b) with passing through the SLM.

Fig. 11. Probability density distributions of speckles for pseudo-natural light. (a) Spatial domain, statistics are made for all the speckles in a pattern
of 600 × 960 pixels; (b) temporal domain, statistics are made for a certain pixel with 30,000 shots. Two kinds of pseudo-natural light models with
uniform distribution and Bernoulli distribution (p1 � 0.94, c � 0.5) are discussed in comparison with standard Rayleigh statistics.
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IA and IB are intensities of two independent light sources A
and B with IF and PF, respectively. The correlations of the
two light fields are completely opposite: one (beam B) does
not pass through a polarizer and exhibits the antibunching ef-
fect due to PF, while the other (beam A) passes through a polar-
izer, and PF degenerates into IF with a fixed polarization angle
of 45°. Note that the two fluctuations driven by different areas
of the SLM are statistically independent, and the uniform dis-
tribution is applied. In this case, as shown in Fig. 12(b), the
second-order cross-correlation coefficient of this hybrid illumi-
nation is also tunable compared to Fig. 2 by adjusting the rel-
ative intensity q of two beams. In the polarization-sensitive GI
experiment, notably, we adjust the relative intensity q of two
beams to make g �2� ≈ 1. At this time, however, it seems
common sense that GI can be implemented only if
g �2�I x I y ≠ 1. This view is indeed correct, but only for an ordinary
transmissive object, but it is wrong for any polarization-
sensitive objects in our system with both PF and IF.

In almost all imaging modalities, to obtain a polarization-
sensitive image, one must collect the two images of two
mutually orthogonal components, and then complete the dif-

ferential operation in the postprocessing. However, in our GI
modality, by multiplexing bunching and antibunching into two
orthogonal polarization components, only a single round of ac-
quisition is required, and no subsequent differential operations
are needed. It is an interesting and special feature that only oc-
curs in GI modality using the hybrid illumination. Also, the
edge-enhanced GI experiment presented in Fig. 7 has similar
advantages.

4. Definition of CNR
For an imaging signal G�x�, CNR is defined as

CNR � jhG�x in�i − hG�xout�ij
ΔG�x in� � ΔG�xout�

, (A2)

where x in and xout denote the pixel positions of in-object and
out-object, respectively. To evaluate both positive and negative
ghost images in a fair way, note that an absolute value operation
is applied. The variance �ΔG�x��2 is given by

�ΔG�x��2 � h�G�x��2i − hG�x�i2: (A3)
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