• Laser & Optoelectronics Progress
  • Vol. 55, Issue 6, 060003 (2018)
Yunchao Li1、2、1; 2; , Xuwen Hu1、2、1; 2; , Zhaojun Liu1、2、1; 2; , Yue Tang1、2、1; 2; , Yanjun Zhang1、2、1; 2; , Wen Jin3、3; , and Shubin Yan1、2、1; 2; *;
Author Affiliations
  • 1 School of Instrument and Electronics,North University of China,Taiyuan,Shanxi 0 30051,China
  • 2 Key Laboratory of Instrumentation Science and Dynamic Measurement,Ministry of Education,North University of China,Taiyuan,Shanxi 0 30051,China
  • 3 China Aerospace Science and Technology Corporation,Beijing 100048,China
  • show less
    DOI: 10.3788/LOP55.060003 Cite this Article Set citation alerts
    Yunchao Li, Xuwen Hu, Zhaojun Liu, Yue Tang, Yanjun Zhang, Wen Jin, Shubin Yan. Research Progress of Atom Vapor Cell for Chip-Scale Atomic Clock[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060003 Copy Citation Text show less
    References

    [1] You Z, Ma L. Construction of a micro positioning navigation and timing system: a change of the pattern of PNT service[J]. Science & Technology Review, 33, 116-119(2015).

    [2] Wang X M, Li L, Meng Y L et al. New method for cold atom number stabilization in integrating sphere cold atom clock[J]. Acta Optica Sinica, 37, 0802001(2017).

    [3] Goka S. Current status and future prospects of the chip-scale atomic-clock[J]. The Journal of the Institute of Electrical Engineers of Japan, 135, 701-704(2015). http://ci.nii.ac.jp/naid/130005100471

    [4] Bagala T, Fibich A, Kubinec P et al. Improvement of short-term frequency stability of the chip scale atomic clock. [C]∥IEEE International Frequency Control Symposium. IEEE, New Orleans, 1-4(2016).

    [5] Lutwak R. Micro-technology for positioning, navigation, and timing towards PNT everywhere and always. [C]∥International Symposium on Inertial Sensors and Systems. IEEE, California, 1-4(2014).

    [6] Wang X, Zhao W Y, Xue W X et al. High contrast atomic clock signal based on coherent population trapping[J]. Acta Optica Sinica, 35, s102002(2015).

    [7] Calero D, Fernandez E, Pares M E. Positioning performance of chip-scale atomic clock GNSS augmentation systems. [C]∥2016 8 th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC). IEEE, Noordwijk , 16670830(2017).

    [8] Cai W Q. Brief survey of atomic clocks based on coherent population trapping[J]. Laser & Optoelectronics Progress, 43, 9-13(2006).

    [9] Xu J. Researchon the critical technology for passive coherent population trapping atomic clock[D]. Wuhan: Huazhong University of Science and Technology, 16-21(2011).

    [10] Knappe S. MEMS atomic clocks[D]∥National Institute of Standards and Technology (NIST), Boulder, CO,. USA, 571-612(2008).

    [11] Knappe S, Velichansky V, Robinson H G et al. Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers[J]. Review of Scientific Instruments, 74, 3142-3145(2003). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5000597

    [12] Knappe S, Velichansky V, Robinson H G et al. Atomic vapor cells for miniature frequency references. [C]∥Proceedings of the IEEE International Frequency Control Symposium Jointly with the European Frequency & Time Forum. IEEE, Tampa, 31-21(2003).

    [13] Balabas M V, Budker D, Kitching J et al. Magnetometry with millimeter-scale antirelaxation-coated alkali-metal vapor cells[J]. Journal of the Optical Society of America B, 23, 1001-1006(2006). http://www.opticsinfobase.org/josab/abstract.cfm?id=90148

    [14] Eklund E J, Shkel A M, Knappe S et al. Spherical rubidium vapor cells fabricated by micro glass blowing. [C]∥IEEE 20 th International Conference on Micro Electro Mechanical Systems, Hyogo, Japan , 171-174(2007).

    [15] Wang X, Tu X H, Kong L Bet al. Coherent arrangement imprisoned cold atomic clock: 200420111238. -02-08(2006).

    [16] Qu S P. Characteristic study and scheme exploration of CPT atomic clock physics package Wuhan: Wuhan Institute of Physical and Mathematics,[D]. Chinese Academy of Sciences, 12-31(2015).

    [17] Zhao J C, Qu S P, Gu S H et al. Experimental study on temperature shift of CPT atomic frequency standard. C]∥The quantum physics of atomic frequency standards: 2011 China Time and Frequency Symposium. Beijing, 101-103(2011).

    [18] Wang S H. Development status of CPT CSAC in foreign countries[J]. Micronanoelectronic Technology, 53, 137-145(2016).

    [19] Perez M A, Nguyen U, Knappe S et al. Rubidium vapor cell with integrated nonmetallic multilayer reflectors[J]. ∥2008 IEEE 21 st International Conference on Micro Electro Mechanical Systems. Tucson IEEE , 790-793(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4443775

    [20] Su J, Deng K, Wang Z et al. Micro-fabrication of 85Rb vapor cell for chip-scale atomic clocks . [C]∥Proceedings of the IEEE International Frequency Control Symposium Jointly with the European Frequency & Time Forum. TEEE, Besancon, 1016-1018(2009).

    [21] Su J, Deng K, Guo D Z et al. Stable 85Rb micro vapour cells: fabrication based on anodic bonding and application in chip-scale atomic clocks [J]. Chinese Physics B, 19, 243-250(2010). http://www.cqvip.com/qk/71135x/201107/35788577.html

    [22] Chang Z, Zhang S Y, Guo D Z et al. Micro Rb atomic vapor cells for the chip-scale atomic clock[C]. Frequency Control Symposium. IEEE, Taipei, China, 1-3(2014).

    [23] Zhao J Y, Liu R Y, Meng H L et al. Progress towards chip-scale atomic clock in Peking University. [C]∥Proceedings of the IEEE International Frequency Control Symposium Jointly with the European Frequency & Time Forum. IEEE, Besançon, 611-613(2017).

    [24] Wei W, Shang J, Kuai W et al. Fabrication of wafer-level spherical Rb vapor cells for miniaturized atomic clocks by a chemical foaming process. [C]∥International Conference on Electronic Packaging Technology and High Density Packaging. IEEE, Guilin, 1639-1641(2012).

    [25] Chen Y, Shang J, Ji Y. Fabrication of low cost spherical alkali atom vapor cells by combining a low temperature anodic bonding and a chemical foaming process (CFP). [C]∥Electronics Packaging Technology Conference. IEEE, Marina Bays Sand, 809-812(2013).

    [26] Chen Y, Shang J, Ji Y. Microfabricated low cost wafer-level spherical alkali atom vapor cells for chip-scale atomic clock by a chemical foaming process (CFP). [C]∥Electronic Packaging Technology Conference. IEEE, Marina Bays Sand, 720-723(2013).

    [27] Suzhou Institute of Nano-Tech. -04-29[P]. Nano-Bionics, Chinese Academy of Sciences. One kind of wafer level chip size packaging method atomic vapor chamber: 201310518366. 3.(2015).

    [28] Li S L, Xu J, Zhang Z Q et al. A microfabricated 87Rb vapor cell with dual- chamber for chip scale atomic clock [J]. Infrared and Laser Engineering, 43, 1463-1468(2014).

    [29] Ermak S V, Semenov V V, Piatyshev E N et al. Microfabricated cells for chip-scale atomic clock based on coherent population trapping: fabrication and investigation[J]. St Petersburg Polytechnical University Journal Physics & Mathematics, 1, 37-41(2015). http://www.sciencedirect.com/science/article/pii/s2405722315000043

    [30] Ermak S V, Semenov V V, Petrenko M V et al. Coherent population trapping in small- and chip-scale 87Rb vapor cells with buffer gas . [C]∥International Journal of Modern Physics: Conference Series, 41, 1660138(2016).

    [31] Huang M, Zhu J, Shi G X et al. Microfabricated alkali atom vapor cells for chip scale atomic clock[J]. Research & Progress of SSE Solid State Electronics, 35, 307(2015).

    [32] Liew L A, Moreland J, Gerginov V. Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide[J]. Applied Physics Letters, 90, 1141061(2007). http://scitation.aip.org/content/aip/journal/apl/90/11/10.1063/1.2712501

    [33] Overstolz T, Haesler J, Bergonzi G et al. Wafer scale fabrication of highly integrated rubidium vapor cells[J]. International Conference on MICRO Electro Mechanical Systems. IEEE, San Francisco, 552-555(2014). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6765700

    [34] Karlen S, Gobet J, Overstolz T et al. Lifetime assessment of RbN3-filled mems atomic vapor cells with Al2O3 coating[J]. Optics Express, 25, 2187(2017). http://adsabs.harvard.edu/abs/2017OExpr..25.2187K

    [35] Maurice V, Rutkowski J, Kroemer E et al. Microfabricated vapor cells filled with a cesium dispensing paste for miniature atomic clocks[J]. Applied Physics Letters, 110, 164103(2017).

    [36] Hirai Y, Terashima K, Nakamura K et al. Low temperature, wafer-level process of alkali-metal vapor cells for micro-fabricated atomic clocks. [C]∥International Conference on Solid-State Sensors, Actuators and Microsystems. IEEE, Kaohsiung, 431-434(2017).

    [37] Li X K, Wang F F, Liang D C et al. Fabrication of chip-scale alkali metal cells[J]. SCIENTIA SINICA Informationis, 45, 693-700(2015).

    [38] Liew L A, Knappe S, Moreland J et al. Microfabricated alkali atom vapor cells[J]. Applied Physics Letters, 84, 2694-2696(2004).

    [39] Kitching J, Knappe S, Liew L et al. Chip scale atomic clocks at NIST. [C]∥NCSL International Workshop and Symposium, 1-9(2005).

    [40] Knappe S, Gerginov V, Schwindt P D et al. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability[J]. Optics Letters, 30, 2351-2353(2005).

    [41] Nieradko L, Gorecki C, Douahi A et al. New approach of fabrication and dispensing of micromachined cesium vapor cell[J]. Journal of Micro/Nanolithography, MEMS & MOEMS, 7, 0330131(2008).

    [42] Douahi A, Nieradko L, Beugnot J C et al. New vapor cell technology for chip scale atomic clock. [C]∥Proceedings of the IEEE International Frequency Control Symposium Jointly with the European Frequency & Time Forum. IEEE, Geneva, 58-61(2007).

    [43] Douahi A, Nieradko L, Beugnot J C et al. Vapour microcell for chip scale atomic frequency standard[J]. Electronics Letters, 43, 33-34(2007).

    [44] Hasegawa M, Dziuban P, Nieradko L et al. Fabrication of wall-coated Cs vapor cells for a chip-scale atomic clock. [C]∥IEEE/LEOS International Conference on Optical MEMs and Nanophotonics. IEEE, Freiburg, 162-163(2008).

    [45] Hasegawa M, Chutani R K, Gorecki C et al. Microfabrication and thermal behavior of miniature cesium-vapor cells for atomic clock operations. [C]∥International Conference on Micro Electro Mechanical Systems. IEEE, Mexico, 712-715(2011).

    [46] Knapkiewicz P, Dziuban J, Walczak R et al. MEMS caesium vapour cell for european micro-atomic-clock[J]. Procedia Engineering, 5, 721-724(2010).

    [47] Pétremand Y. Straessle R, de Rooij N, et al. Multiple stack anodically bonded 4 mm thick Rb vapor cell. [C]∥Proceedings of the IEEE International Frequency Control Symposium Jointly with the European Frequency & Time Forum. IEEE, San Francisco, 1, 1-3(2011).

    [48] Vecchio F, Venkatraman V, Shea H R et al. dispensing and hermetic sealing Rb in a miniature reference cell for integrated atomic clocks[J]. ∥Sensors and Actuators A: Physical, 172, 330-335(2011).

    [49] Abdullah S, Affolderbach C, Gruet F et al. Aging study on a micro-fabricated Cs buffer-gas cell for atomic clock applications. [C]∥European Frequency and Time Forum. IEEE, Denver, 178-181(2015).

    [50] Dong H F, Fang J C, Zhou B Q et al. Fabrication of atomic vapor cell chip for MEMS atomic spin-polarized gyroscope[J]. Chinese Journal of Scientific Instrument., 31, 2592-2596(2010).

    [51] Xu J, Zhang T, Gan Z et al. Atomic vapor cell fabrication for atomic clock based on vacuum packaging by multi-stack anodic bonding using two electrodes. [C]∥International Conference on Electronic Packaging Technology & High Density Packaging, Xi’an, 1342-1345(2010).

    [52] Yu J, Shang J T, Qi G et al. Micro-fabricated spherical rubidium vapor cell and its integration in 3-axis atomic magnetometer. [C]∥Electronic Components and Technology Conference. IEEE, San Diego, 946-949(2015).

    [53] Gong F, Jau Y Y, Jensen K et al. Electrolytic fabrication of atomic clock cells. [C]∥International Frequency Control Symposium and Exposition. IEEE, Miami, 711-714(2006).

    [54] Radhakrishnan S, Lal A. Alkali metal-wax micropackets for chip-scale atomic clocks. [C]∥The International Conference on Solid-State Sensors, Actuators and Microsystems, 2005 Digest of Technical Papers Transducers. IEEE, Seoul, 23-26(2005).

    [55] You Z, Ma B, Ruan Y et al. Microfabrication of MEMS alkali metal vapor cells for chip-scale atomic devices[J]. Optics and Precision Engineering, 21, 1440-1446(2013).

    [56] Chen S, Ruan Y. 562-[J]. Ma B. A new packaging method of alkali metal simple substrate, related key techniques. Key Engineering Materials, 565, 1361-1366(2013).

    [57] Pétremand Y, Schori C, Straessle R et al. Low temperature indium-based sealing of micro fabricated alkali cells for chip scale atomic clocks. [C]∥EFTF-2010, 24 th European Frequency and Time Forum. IEEE, Noordwijk , 1-3(2010).

    [58] Straessle R, Pellaton M, Pétremand Y et al. Low-temperature indium hermetic sealing of alkali vapor-cells for chip-scale atomic clocks. [C]∥International Conference on Micro Electro Mechanical Systems. IEEE, Paris, 361-364(2012).

    [59] Pétremand Y, Affolderbach C, Straessle R et al. Microfabricated rubidium vapour cell with a thick glass core for small-scale atomic clock applications[J]. Journal of Micromechanics & Microengineering, 22, 025013(2012).

    [60] Abdullah S, Affolderbach C, Gruet F et al. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks[J]. Applied Physics Letters, 106, 163505(2015).

    Yunchao Li, Xuwen Hu, Zhaojun Liu, Yue Tang, Yanjun Zhang, Wen Jin, Shubin Yan. Research Progress of Atom Vapor Cell for Chip-Scale Atomic Clock[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060003
    Download Citation