• Journal of Semiconductors
  • Vol. 41, Issue 6, 062301 (2020)
A. Menani1, L. Dehimi1、2, S. Dehimi3, and F. Pezzimenti4
Author Affiliations
  • 1Laboratory of Metallic and Semiconducting Materials (LMSM), Department of Electrical Engineering, Biskra University, Biskra, Algeria
  • 2Faculty of Science, Elhadj Lakhdar University, Batnal, Algeria
  • 3Research Centre in Industrial Technology (CRTI), Algiers, Algeria
  • 4DIIES – Mediterranea University of Reggio Calabria, Reggio Calabria, Italy
  • show less
    DOI: 10.1088/1674-4926/41/6/062301 Cite this Article
    A. Menani, L. Dehimi, S. Dehimi, F. Pezzimenti. Modelling and optical response of a compressive-strained AlGaN/GaN quantum well laser diode[J]. Journal of Semiconductors, 2020, 41(6): 062301 Copy Citation Text show less
    References

    [1]

    [2]

    [3] C Kieleck, n M Eichhorn, h A Hirth et al. High-efficiency 20–50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 μm holmium laser. Opt Lett, 34, 262(2009).

    [4] H C Liu, R Dudek, A Shen et al. High absorption quantum-well infrared photodetectors. Appl Phys Lett, 79, 4237(2001).

    [5] F Bouzid, F Pezzimenti, L Dehimi et al. Analytical modeling of dual-junction tandem solar cells based on an InGaP/GaAs heterojunction stacked on a Ge substrate. J Electron Mater, 48, 4107(2019).

    [6] V M Ustinov, A E Zhukov. GaAs-based long-wavelength lasers. Semicond Sci Technol, 15, R41(2000).

    [7] A Rogalski. Infrared detectors: an overview. Infrared Phys Tech, 43, 187(2002).

    [8] J Justice, C Bower, M Meitl et al. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat Photonics, 6, 610(2012).

    [9] F Bouzid, L Dehimi, F Pezzimenti et al. Numerical simulation study of a high efficient AlGaN-based ultraviolet photodetector. Superlattice Microstruct, 122, 57(2018).

    [10] S Dehimi, L Dehimi, A Aissat. Study and Simulation of a quantum well structure based ZnTe/ZnxCd1–xTe/ZnTe. Proc International Conference of Renewable Energy – CIER(2014).

    [11] H Liu, T Wang, g Q Jiang et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 5, 416(2011).

    [12] F G Della Corte, G De Martino, F Pezzimenti et al. Numerical simulation study of a low breakdown voltage 4H-SiC MOSFET for photovoltaic module-level applications. IEEE Trans Electron Devices, 65, 3352(2018).

    [13]

    [14] H Yoshida, M Kuwabara, Y Yamashita et al. AlGaN-based laser diodes for the short-wavelength ultraviolet region. New J Phys, 11, 125013(2009).

    [15] F Bouzid, L Dehimi, F Pezzimenti. Performance analysis of a Pt/n-GaN Schottky barrier UV detector. J Electron Mater, 46, 6563(2017).

    [16] S P DenBaars, D Feezell, K Kelchner et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Mater, 61, 945(2013).

    [17] Y Marouf, L Dehimi, F Pezzimenti. Simulation study for the current matching optimization in In0.48Ga0.52N/In0.74Ga0.26N dual junction solar cells. Superlattice Microstruct, 130, 377(2019).

    [18] H Bencherif, L Dehimi, F Pezzimenti et al. Improving the efficiency of a-Si: H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating. Optik, 182, 682(2019).

    [19] K Zeghdar, L Dehimi, F F Pezzimenti et al. Simulation and analysis of the current-voltage-temperature characteristics of Al/Ti/4H-SiC Schottky barrier diodes. Jpn J Appl Phys, 58, 014002(2019).

    [20] A Fritah, L Dehimi, F Pezzimenti et al. Analysis of IVT characteristics of Au/n-InP Schottky barrier diodes with modeling of nanometer-sized patches at low temperature. J Electron Mater, 48, 3692(2019).

    [21] R M Farrell, D A Haeger, P S Hsu et al. High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes. Appl Phys Lett, 99, 171113(2011).

    [22] F Bouzid, F Pezzimenti, L Dehimi et al. Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode. Jpn J Appl Phys, 56, 094301(2017).

    [23] H Bencherif, L L Dehimi, F Pezzimenti et al. Analytical model for the light trapping effect on ZnO: Al/c-Si/SiGe/c-Si solar cells with an optimized design. Proc International Conference on Applied Smart Systems – ICASS(2018).

    [24] Y Marouf, L Dehimi, F Bouzid et al. Theoretical design and performance of InxGa1–xN single junction solar cell. Optik, 163, 22(2018).

    [25] E Monroy, F Guillot, S Leconte et al. III-nitride nanostructures for infrared optoelectronics. Acta Phys Pol A, 110, 295(2006).

    [26] S Rao, G Pangallo, F Pezzimenti et al. High-performance temperature sensor based on 4H-SiC Schottky diodes. IEEE Electron Device Lett, 36, 720(2015).

    [27] G De Martino, F Pezzimenti, F G Della Corte. Interface trap effects in the design of a 4H-SiC MOSFET for low voltage applications. Proc International Semiconductor Conference – CAS(2018).

    [28] H Bencherif, L Dehimi, F Pezzimenti et al. Temperature and SiO2/4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs. Appl Phys A, 125, 294(2019).

    [29] M L Megherbi, F Pezzimenti, L Dehimi et al. Analysis of different forward current-voltage behaviours of Al implanted 4H-SiC vertical p–i–n diodes. Solid-State Electron, 109, 12(2015).

    [30] H Bencherif, L Dehimi, F Pezzimenti et al. Multiobjective optimization of design of 4H-SiC power MOSFETs for specific applications. J Electron Mater, 48, 3871(2019).

    [31] M Ikeda, T Mizuno, M Takeya et al. High-power GaN-based semiconductor lasers. Phys Status Solidi, 6, 1461(2004).

    [32] F Pezzimenti, H Bencherif, A Yousfi et al. Current–voltage analytical model and multiobjective optimization of design of a short channel gate-all-around-junctionless MOSFET. Solid-State Electron, 161, 107642(2019).

    [33] A Asgari, S Dashti. Optimization of optical gain in AlxGa1−xN/ GaN/AlxGa1−x N strained quantum well laser. Optik, 123, 1546(2012).

    [34] E F Schubert, J K Kim. Solid-state light sources getting smart. Science, 308, 1274(2005).

    [35] T Ohtoshi, K Yamaguchi, C Nagaoka et al. A two dimensional device simulator of semiconductor lasers. Solid-State Electron, 30, 627(1987).

    [36] S L Chuang, C S Chang. k.p method for strained wurtzite semiconductors. Phys Rev B, 54, 2491(1996).

    [37] S L Chuang. Optical gain of strained wurtzite GaN quantum-well lasers. IEEE J Quantum Electron, 32, 1791(1996).

    [38] TCAD Silvaco. Atlas user’s manual device simulation software. California: Silvaco Int.(2016).

    [39] F Bernardini, V Fiorentini. Spontaneous versus piezoelectric polarization in III–V Nitrides: Conceptual aspects and practical consequences. Phys Status Solidi B, 216, 391(1999).

    [40] O Ambacher, J Majewski, C Miskys et al. Pyroelectric properties of Al(In)GaN/GaN heteroand quantum well structures. J Phys Condens Mat, 14, 3399(2002).

    [41]

    [42] N Nepal, J Li, M L Nakarmi et al. Temperature and compositional dependence of AlGaN the energy band gap of alloys. Appl Phys Lett, 87, 242104(2005).

    [43] H Dakhlaoui. Linear and nonlinear optical absorption coefficients and refractive index changes in GaN/AlxGa1–xN double quantum wells operating at 1.55 μm. J Appl Phys, 117, 1357051(2015).

    [44] S Dehimi, L Dehimi, T Asar et al. Modelling of a Cd1–x ZnxTe/ZnTe single quantum well for laser diodes. J Electron Mater, 46, 775(2017).

    [45]

    [46] S Dehimi, L Dehimi, T Asar et al. Modeling and simulation of ZnxCd1–xTe/ZnTe quantum well structure for laser applications. Optik, 135, 153(2017).

    [47] S Dehimi, A Aissat, D Haddad et al. Optimization of optical gain in InxGa1–xSb/GaSb unstrained quantum well structures. Enrgy Proced, 74, 191(2015).

    [48] A Aissat, S Nacer, F Ykhlef et al. Modeling of Ga1−xInxAs1−yzNySbz/GaAs quantum well properties for near-infrared lasers. Mater Sci Semicond Proc, 16, 1936(2013).

    A. Menani, L. Dehimi, S. Dehimi, F. Pezzimenti. Modelling and optical response of a compressive-strained AlGaN/GaN quantum well laser diode[J]. Journal of Semiconductors, 2020, 41(6): 062301
    Download Citation