• Journal of Semiconductors
  • Vol. 41, Issue 6, 062301 (2020)
A. Menani1, L. Dehimi1、2, S. Dehimi3, and F. Pezzimenti4
Author Affiliations
  • 1Laboratory of Metallic and Semiconducting Materials (LMSM), Department of Electrical Engineering, Biskra University, Biskra, Algeria
  • 2Faculty of Science, Elhadj Lakhdar University, Batnal, Algeria
  • 3Research Centre in Industrial Technology (CRTI), Algiers, Algeria
  • 4DIIES – Mediterranea University of Reggio Calabria, Reggio Calabria, Italy
  • show less
    DOI: 10.1088/1674-4926/41/6/062301 Cite this Article
    A. Menani, L. Dehimi, S. Dehimi, F. Pezzimenti. Modelling and optical response of a compressive-strained AlGaN/GaN quantum well laser diode[J]. Journal of Semiconductors, 2020, 41(6): 062301 Copy Citation Text show less
    Schematic diagram showing the energy band states in the QW: conduction (C), heavy-hole (HH), light-hole (LH), and split-off (SO).
    Fig. 1. Schematic diagram showing the energy band states in the QW: conduction (C), heavy-hole (HH), light-hole (LH), and split-off (SO).
    (Color online) Optical gain spectrum in an Al0.1Ga0.9N/GaN/Al0.1Ga0.9N QW laser as a function of the wavelength for different carrier densities in the active region at T = 300 K. (a) Band-to-band model. (b) 6-band k.p model.
    Fig. 2. (Color online) Optical gain spectrum in an Al0.1Ga0.9N/GaN/Al0.1Ga0.9N QW laser as a function of the wavelength for different carrier densities in the active region at T = 300 K. (a) Band-to-band model. (b) 6-band k.p model.
    (Color online) Optical gain spectrum as a function of the Al molar fraction at T = 300 K. (a) Band-to-band model. (b) 6-band k.p model.
    Fig. 3. (Color online) Optical gain spectrum as a function of the Al molar fraction at T = 300 K. (a) Band-to-band model. (b) 6-band k.p model.
    (Color online) Optical gain spectrum as a function of the GaN QW width (x = 0.1 and n = 1 × 1019 cm−3) at T = 300 K.
    Fig. 4. (Color online) Optical gain spectrum as a function of the GaN QW width (x = 0.1 and n = 1 × 1019 cm−3) at T = 300 K.
    (Color online) Dependence of the optical gain on temperature (Lw = 40 Å, x = 0.1, and n = 1 × 1019 cm−3). (a) Band-to-band model. (b) 6-band k.p model.
    Fig. 5. (Color online) Dependence of the optical gain on temperature (Lw = 40 Å, x = 0.1, and n = 1 × 1019 cm−3). (a) Band-to-band model. (b) 6-band k.p model.
    (Color online) GaN bandgap energy as a function of the temperature.
    Fig. 6. (Color online) GaN bandgap energy as a function of the temperature.
    (Color online) Threshold current density dependence on temperature (Lw= 40 Å, x = 0.1, and n = 1 × 1019 cm−3).
    Fig. 7. (Color online) Threshold current density dependence on temperature (Lw= 40 Å, x = 0.1, and n = 1 × 1019 cm−3).
    ParameterGaNAlN
    Eg (eV) 3.46.25
    α (meV/K) 0.901.799
    β (K) 8301462
    mc/m00.200.33
    mv/m00.80.25
    a3.1893.112
    c5.1854.982
    Δ1 (eV) 0.01–0.169
    Δ2 = Δ3 (eV) 0.00560.0063
    A1–7.21–3.86
    A2–0.44–0.25
    A36.683.58
    A4–3.46–1.32
    A5–3.40–1.47
    A6–4.90–1.64
    D1 (eV) –3.7–11.8
    D2 (eV) 4.507.90
    D3 (eV) 8.208.80
    D4 (eV) –4.1–3.90
    C11 (GPa) 390396
    C12 (GPa) 145137
    C13 (GPa) 106108
    C33 (GPa) 398373
    dpz (pm/V) –1.6–2.1
    Psp (C/m2) –0.034–0.09
    Table 1. Material parameters for wurtzite nitride binaries at T = 300 K.
    A. Menani, L. Dehimi, S. Dehimi, F. Pezzimenti. Modelling and optical response of a compressive-strained AlGaN/GaN quantum well laser diode[J]. Journal of Semiconductors, 2020, 41(6): 062301
    Download Citation