• Opto-Electronic Advances
  • Vol. 4, Issue 6, 200017-1 (2021)
Huangxuan Zhao1、2、3, Ke Li2、3、4, Fan Yang1, Wenhui Zhou1, Ningbo Chen2, Liang Song2, Chuansheng Zheng1、*, Zhicheng Liu3、4, and Chengbo Liu2
Author Affiliations
  • 1Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
  • 2Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
  • 3School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
  • 4Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Beijing 100069, China
  • show less
    DOI: 10.29026/oea.2021.200017 Cite this Article
    Huangxuan Zhao, Ke Li, Fan Yang, Wenhui Zhou, Ningbo Chen, Liang Song, Chuansheng Zheng, Zhicheng Liu, Chengbo Liu. Customized anterior segment photoacoustic imaging for ophthalmic burn evaluation in vivo[J]. Opto-Electronic Advances, 2021, 4(6): 200017-1 Copy Citation Text show less
    References

    [1] YC Tham, X Li, TY Wong, HA Quigley, T Aung, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology, 121, 2081-2090(2014).

    [2] 2015 GBD. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388, 1545-1602(2016).

    [3] Y Zhang, SZ Li, L Li, MG He, R Thomas, et al. Dynamic iris changes as a risk factor in primary angle closure disease. Invest Ophthalmol Vis Sci, 57, 218-226(2016).

    [4] HF Yang, PK Yu, SJ Cringle, XH Sun, DY Yu. Quantitative study of the microvasculature and its endothelial cells in the porcine iris. Exp Eye Res, 132, 249-258(2015).

    [5] Y Zhang, SZ Li, L Li, MG He, R Thomas, et al. Quantitative analysis of iris changes after physiologic and pharmacologic mydriasis in a rural Chinese population. Invest Ophthalmol Vis Sci, 55, 4405-4412(2014).

    [6] CS Tan, LW Lim, VS Chow, IW Chay, S Tan, et al. Optical coherence tomography angiography evaluation of the parafoveal vasculature and its relationship with ocular factors. Invest Ophthalmol Vis Sci, 57, OCT224-OCT234(2016).

    [7] JG Ghosh, AA Nguyen, CE Bigelow, S Poor, YB Qiu, et al. Long-acting protein drugs for the treatment of ocular diseases. Nat Commun, 8, 14837(2017).

    [8] Fluorescence Angiography in Ophthalmology (Springer, Berlin, 2008).

    [9] AH Skalet, Y Li, CD Lu, Y Jia, B Lee, et al. Optical coherence tomography angiography characteristics of iris melanocytic tumors. Ophthalmology, 124, 197-204(2017).

    [10] SS Ong, TJ Cummings, L Vajzovic, P Mruthyunjaya, CA Toth. Comparison of optical coherence tomography with fundus photographs, fluorescein angiography, and histopathologic analysis in assessing coats disease. JAMA Ophthalmol, 137, 176-183(2019).

    [11] Diabetes and Fundus OCT (Elsevier, 2020); https://doi.org/10.1016/B978-0-12-817440-1.00006-1.

    [12] M Pellegrini, A Acquistapace, M Oldani, MG Cereda, A Giani, et al. Dark atrophy: an optical coherence tomography angiography study. Ophthalmology, 123, 1879-1886(2016).

    [13] MC Savastano, B Lumbroso, M Rispoli. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina, 35, 2196-2203(2015).

    [14] WJ Choi, ZW Zhi, RK Wang. In vivo OCT microangiography of rodent iris. Opt Lett, 39, 2455-2458(2014).

    [15] C Tian, W Zhang, A Mordovanakis, XD Wang, YM Paulus. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography. Opt Express, 25, 15947-15955(2017).

    [16] W Zhang, YX Li, VP Nguyen, ZY Huang, ZP Liu, et al. High-resolution, in vivo multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy imaging of rabbit retinal neovascularization. Light Sci Appl, 7, 103(2018).

    [17] PX Lai, LD Wang, JW Tay, LV Wang. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat Photonics, 9, 126-132(2015).

    [18] YY Zhou, F Cao, HH Li, XZ Huang, DS Wei, et al. Photoacoustic imaging of microenvironmental changes in facial cupping therapy. Biom Opt Express, 11, 2394-2401(2020).

    [19] YY Zhou, SY Liang, MS Li, CB Liu, PX Lai, et al. Optical-resolution photoacoustic microscopy with ultrafast dual-wavelength excitation. J Biophotonics, 13, e201960229(2020).

    [20] YY Zhou, JB Chen, C Liu, CB Liu, PX Lai, et al. Single-shot linear dichroism optical-resolution photoacoustic microscopy. Photoacoustics, 16, 100148(2019).

    [21] WZ Liu, KM Schultz, K Zhang, A Sasman, FL Gao, et al. In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy. Photoacoustics, 2, 81-86(2014).

    [22] WZ Liu, HF Zhang. Photoacoustic imaging of the eye: a mini review. Photoacoustics, 4, 112-123(2016).

    [23] HX Zhao, K Li, NB Chen, KY Zhang, LD Wang, et al. Multiscale vascular enhancement filter applied to in vivo morphologic and functional photoacoustic imaging of rat ocular vasculature. IEEE Photonics J, 11, 3900912(2019).

    [24] LV Wang, S Hu. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 335, 1458-1462(2012).

    [25] S Jeon, HB Song, J Kim, BJ Lee, R Managuli, et al. In vivo photoacoustic imaging of anterior ocular vasculature: a random sample consensus approach. Sci Rep, 7, 4318(2017).

    [26] S Raveendran, HT Lim, T Maekawa, MV Matham, DS Kumar. Gold nanocages entering into the realm of high-contrast photoacoustic ocular imaging. Nanoscale, 10, 13595-13968(2018).

    [27] LV Wang, JJ Yao. A practical guide to photoacoustic tomography in the life sciences. Nat Methods, 13, 627-638(2016).

    [28] HX Zhao, GS Wang, RQ Lin, XJ Gong, L Song, et al. Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo. J Biomed Opt, 23, 046006(2018).

    [29] VP Nguyen, YX Li, W Zhang, XD Wang, YM Paulus. High-resolution multimodal photoacoustic microscopy and optical coherence tomography image-guided laser induced branch retinal vein occlusion in living rabbits. Sci Rep, 9, 10560(2019).

    [30] HX Zhao, NB Chen, T Li, JH Zhang, RQ Lin, et al. Motion correction in optical resolution photoacoustic microscopy. IEEE Trans Med Imaging, 38, 2139-2150(2019).

    [31] HX Zhao, ZW Ke, NB Chen, SJ Wang, K Li, et al. A new deep learning method for image deblurring in optical microscopic systems. J Biophotonics, 13, e201960147(2020).

    [32] SW Lee, H Kang, TG Lee. Real-time display and in-vivo optical-resolution photoacoustic microscopy for ophthalmic imaging. Bioimaging, 2, 34-38(2017).

    [33] N Wu, SQ Ye, QS Ren, CH Li. High-resolution dual-modality photoacoustic ocular imaging. Opt Lett, 39, 2451-2454(2014).

    [34] C Yeh, BT Soetikno, S Hu, KI Maslov, LV Wang. Microvascular quantification based on contour-scanning photoacoustic microscopy. J Biomed Opt, 19, 096011(2014).

    [35] C Yeh, B Soetikno, S Hu, KI Maslov, LV Wang. Three‐dimensional arbitrary trajectory scanning photoacoustic microscopy. J Biophotonics, 8, 303-308(2015).

    [36] HC Zhou, NB Chen, HX Zhao, TH Yin, JH Zhang, et al. Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy. Photoacoustics, 15, 100143(2019).

    [37] MA Fischler, RC Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM, 24, 381-395(1981).

    [38] E Bullitt, G Gerig, SM Pizer, W Lin, SR Aylward. Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Trans Med Imaging, 22, 1163-1171(2003).

    [39] AH Parikh, JK Smith, MG Ewend, E Bullitt. Correlation of MR perfusion imaging and vessel tortuosity parameters in assessment of intracranial neoplasms. Technol Cancer Res Treat, 3, 585-590(2004).

    [40] SSM Fung, RMK Stewart, SK Dhallu, DA Sim, PA Keane, et al. Anterior segment optical coherence tomographic angiography assessment of acute chemical injury. Am J Ophthalmol, 205, 165-174(2019).

    [41] S Hu, B Rao, K Maslov, LV Wang. Label-free photoacoustic ophthalmic angiography. Opt Lett, 35, 1-3(2010).

    [42] JJ Yao, LD Wang, JM Yang, KI Maslov, TTW Wong, et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods, 12, 407-410(2015).

    [43] C Zhang, HX Zhao, S Xu, NB Chen, K Li, et al. Multiscale high-speed photoacoustic microscopy based on free-space light transmission and a MEMS scanning mirror. Opt Lett, 45, 4312-4315(2020).

    [44] JY Guo, T Wang, BG Quan, H Zhao, CZ Gu, et al. Polarization multiplexing for double images display. Opto-Electron Adv, 2, 180029(2019).

    [45] YB Zhang, H Liu, H Cheng, JG Tian, SQ Chen. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron Adv, 3, 200002(2020).

    Huangxuan Zhao, Ke Li, Fan Yang, Wenhui Zhou, Ningbo Chen, Liang Song, Chuansheng Zheng, Zhicheng Liu, Chengbo Liu. Customized anterior segment photoacoustic imaging for ophthalmic burn evaluation in vivo[J]. Opto-Electronic Advances, 2021, 4(6): 200017-1
    Download Citation