• Journal of Semiconductors
  • Vol. 40, Issue 2, 022804 (2019)
P. Vigneshwara Raja1 and N. V. L. Narasimha Murty2
Author Affiliations
  • 1Micro-Fabrication and Characterization Lab, School of Electrical Sciences, IIT Bhubaneswar, Odisha-752050, India
  • 2Electrical Engineering, IIT Tirupati, Tirupati, Andhra Pradesh-517506, India
  • show less
    DOI: 10.1088/1674-4926/40/2/022804 Cite this Article
    P. Vigneshwara Raja, N. V. L. Narasimha Murty. Thermally annealed gamma irradiated Ni/4H-SiC Schottky barrier diode characteristics[J]. Journal of Semiconductors, 2019, 40(2): 022804 Copy Citation Text show less
    References

    [1]

    [2] X Xin, F Yan, T W Koeth et al. Demonstration of 4H-SiC UV single photon counting avalanche photodiode. Electron Lett, 41, 212(2005).

    [3] J E Lees, D J Bassford, E J Bunce et al. Silicon carbide X-ray detectors for planetary exploration. Nucl Instr Meth Phys Res A, 604, 174(2009).

    [4]

    [5] P V Raja, N V L N Murty. Thermally stimulated capacitance in gamma irradiated epitaxial 4H-SiC schottky barrier diodes. J Appl Phys, 123, 161536(2018).

    [6] A Castaldini, A Cavallini, L Rigutti et al. Low temperature annealing of electron irradiation induced defects in 4H-SiC. Appl Phys Lett, 85, 3780(2004).

    [7] N Iwamoto, B C Johnson, T Ohshima et al. Annealing effects on charge collection efficiency of an electron-irradiated 4H-SiC particle detector. 10th international workshop on radiation effects on semiconductor devices for space applications (RASEDA-10), 42(2013).

    [8]

    [9] F Roccaforte, F La Via, A Baeri et al. Structural and electrical properties of Ni/Ti schottky contacts on silicon carbide upon thermal annealing. J Appl Phys, 96, 4313(2004).

    [10] A M Strel’chuk, A V Davydov, J Tringe et al. Characteristics of He+-irradiated Ni schottky diodes based on 4H-SiC epilayer grown by sublimation. Phys Status Solidi C, 6, 2876(2009).

    [11] S K Gupta, A Azam, J Akhtar. Improved electrical parameters of vacuum annealed Ni/4H-SiC (0001) schottky barrier diode. Physica B, 406, 3030(2011).

    [12] S K Gupta, N Pradhan, C Shekhar et al. Design, fabrication, and characterization of Ni/4H-SiC (0001) schottky diodes array equipped with field plate and floating guard ring edge termination structures. IEEE Trans Semicond Manuf, 25, 664(2012).

    [13] V Kumar, N Kaminski, A S Maan et al. Capacitance roll-off and frequency-dispersion capacitance-conductance phenomena in field plate and guard ring edge-terminated Ni/SiO2/4H-nSiC schottky barrier diodes. Phys Status Solidi A, 213, 193(2016).

    [14] V Kumar, A S Maan, J Akhtar. Tailoring surface and electrical properties of Ni/4H-nSiC schottky barrier diodes via selective swift heavy ion irradiation. Phys Status Solidi A, 215, 1700555(2018).

    [15] L Huang, B Liu, Q Zhu et al. Low resistance Ti Ohmic contacts to 4H-SiC by reducing barrier heights without high temperature annealing. J Appl Phys, 100, 263503(2012).

    [16] A Kcstle, S P Wilks, P R Dunstan et al. Improved Ni/SiC Schottky diode formation. Electron Lett, 36, 267(2000).

    [17] M Sochacki, J Szmidt, M Bakowski et al. Influence of annealing on reverse current of 4H-SiC schottky diodes. Diamond Relat Mater, 11, 1263(2002).

    [18] R Pérez, N Mestres, J Montserrat et al. Barrier inhomogeneities and electrical characteristics of Ni/Ti bilayer schottky contacts on 4H-SiC after high temperature treatments. Phys Status Solidi A, 202, 692(2005).

    [19] R Pe′rez, N Mestres, D Tournier et al. Ni/Ti ohmic and Schottky contacts on 4H-SiC formed with a single thermal treatment. Diamond Relat Mater, 14, 1146(2005).

    [20] L Calcagno, A Ruggiero, F Roccaforte et al. Effects of annealing temperature on the degree of inhomogeneity of nickel-silicide/SiC schottky barrier. J Appl Phys, 98, 023713(2005).

    [21] T N Oder, P Martin, A V Adedeji et al. Improved schottky contacts on n-type 4H-SiC using ZrB2 deposited at high temperatures. J Electron Mater, 36, 805(2007).

    [22] T N Oder, T L Sung, M Barlow et al. Improved Ni schottky contacts on n-type 4H-SiC using thermal processing. J Electron Mater, 38, 772(2009).

    [23] C K Ramesha, V R Reddy. Influence of annealing temperature on the electrical and structural properties of palladium schottky contacts on n-type 4H-SiC. Superlattices Microstruct, 76, 55(2014).

    [24] L C Han, H J Sun, K A Liu et al. Annealing temperature influence on the degree of inhomogeneity of the schottky barrier in Ti/4H-SiC contacts. Chin Phys B, 23, 127302(2014).

    [25] G Pristavu, G Brezeanu, M Badila et al. A model to non-uniform Ni schottky contact on SiC annealed at elevated temperatures. Appl Phys Lett, 106, 261605(2015).

    [26] S Kyoung, E Jung, M Y Sung. Post-annealing processes to improve inhomogeneity of schottky barrier height in Ti/Al 4H-SiC schottky barrier diode. Microelectron Eng, 154, 69(2016).

    [27] S B Yun, J H Kim, Y H Kang et al. Optimized annealing temperature of Ti/4H-SiC schottky barrier diode. J Nanosci Nanotechnol, 17, 3406(2017).

    [28] L Storasta, H Tsuchida, T Miyazawa et al. Enhanced annealing of the Z1/2 defect in 4H-SiC epilayers. J Appl Phys, 103, 013705(2008).

    [29] M A Mannan, K V Nguyen, R O Pak et al. Deep levels in n-type 4H-silicon carbide epitaxial layers investigated by deep-level transient spectroscopy and isochronal annealing studies. IEEE Trans Nucl Sci, 63, 1083(2016).

    [30] P V Raja, J Akhtar, C V S Rao et al. Spectroscopic performance studies of 4H-SiC detectors for fusion alpha-particle diagnostics. Nucl Instrum Methods Phys Res A, 869, 118(2017).

    [31] P V Raja, N V L N Murty. Thermal annealing studies in epitaxial 4H-SiC schottky barrier diodes over wide temperature range. Microelectron Reliab, 87, 213(2018).

    [32] M Sochacki, A Kolendo, J Szmidt et al. Properties of Pt/4H-SiC schottky diodes with interfacial layer at elevated temperatures. Solid State Electron, 49, 585(2005).

    [33] M Bhatnagar, B J Baliga, H R Kirk et al. Effect of surface inhomogeneities on the electrical characteristics of SiC Schottky contacts. IEEE Trans Electron Devices, 43, 150(1996).

    [34] D Defives, O Noblanc, C Dua et al. Barrier inhomogeneities and electrical characteristics of Ti/4H-SiC Schottky rectifiers. IEEE Trans Electron Devices, 46, 449(1999).

    [35] Q Zhang, T S Sudarshan. The influence of high-temperature annealing on SiC Schottky diode characteristics. J Electron Mater, 30, 1466(2001).

    [36] D V Lang. Space-charge spectroscopy in semiconductors. In: Thermally stimulated relaxation in solids. Berlin: Springer, 93(1979).

    [37] G L Miller, D V Lang, L C Kimerling. Capacitance transient spectroscopy. Ann Rev Mater Sci, 7, 377(1977).

    [38]

    [39] T Dalibor, G Pensl, H Matsunami et al. Deep defect centers in silicon carbide monitored with deep level transient spectroscopy. Phys Status Solidi A, 162, 199(1997).

    [40]

    [41] S Y Han, K H Kim, J K Kim et al. Ohmic contact formation mechanism of Ni on n-type 4H-SiC. Appl Phys Lett, 79, 1816(2001).

    [42] S Y Han, J Lee. Effect of interfacial reactions on electrical properties of Ni contacts on lightly doped n-type 4H-SiC. J Electrochem Soc, 149, G189(2002).

    [43] S Y Han, J Shin, B Lee et al. Microstructural interpretation of Ni ohmic contact on n-type 4H-SiC. J Vac Sci Technol B, 20, 1496(2002).

    [44] S U Omar, T S Sudarshan, T A Rana et al. Interface trap-induced nonideality in as-deposited Ni/4H-SiC schottky barrier diode. IEEE Trans Electron Devices, 62, 615(2015).

    [45] J H Zhao, K Sheng, R C Lebron-Velilla. Silicon carbide Schottky barrier diode. Int J High Speed Electron, 15, 821(2005).

    [46] D H Kim, J H Lee, J H Moon et al. Improvement of the reverse characteristics of Ti/4H-SiC Schottky barrier diodes by thermal treatments. Solid State Phenom, 124-126, 105(2007).

    P. Vigneshwara Raja, N. V. L. Narasimha Murty. Thermally annealed gamma irradiated Ni/4H-SiC Schottky barrier diode characteristics[J]. Journal of Semiconductors, 2019, 40(2): 022804
    Download Citation