• Photonics Research
  • Vol. 10, Issue 10, 2267 (2022)
Yang Xu1, Yulu Qin1、2, Peng Lang1, Boyu Ji1, Xiaowei Song1, and Jingquan Lin1、*
Author Affiliations
  • 1School of Science, Changchun University of Science and Technology, Changchun 130022, China
  • 2State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, China
  • show less
    DOI: 10.1364/PRJ.460638 Cite this Article Set citation alerts
    Yang Xu, Yulu Qin, Peng Lang, Boyu Ji, Xiaowei Song, Jingquan Lin. Flexible manipulation of plasmon dephasing time via the adjustable Fano asymmetric dimer[J]. Photonics Research, 2022, 10(10): 2267 Copy Citation Text show less
    References

    [1] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [2] K. A. Willets, R. P. Van Duyne. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 58, 267-297(2007).

    [3] T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spirkl, J. Feldmann. Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett., 80, 4249-4252(1998).

    [4] K. Wu, Y. Zhan, S. Wu, J. Deng, X. Li. Surface-plasmon enhanced photodetection at communication band based on hot electrons. J. Appl. Phys., 118, 063101(2015).

    [5] G. R. Aizin, D. V. Fateev, G. M. Tsymbalov, V. V. Popov. Terahertz plasmon photoresponse in a density modulated two-dimensional electron channel of a GaAs/AlGaAs field-effect transistor. Appl. Phys. Lett., 91, 163507(2007).

    [6] F. J. Rodríguez-Fortuño, M. Martínez-Marco, B. Tomás-Navarro, R. Ortuño, J. Martí, A. Martínez, P. J. Rodríguez-Cantó. Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Appl. Phys. Lett., 98, 133118(2011).

    [7] J. L. West, N. J. Halas. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Ann. Rev. Biomed. Eng., 5, 285-292(2003).

    [8] J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, N. J. Halas. Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett., 12, 1660-1667(2012).

    [9] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nanosci. Technol., 7, 308-319(2010).

    [10] N. E. Omaghali, V. Tkachenko, A. Andreone, G. Abbate. Optical sensing using dark mode excitation in an asymmetric dimer metamaterial. Sensors, 14, 272-282(2014).

    [11] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707-715(2010).

    [12] X. Zhang, J. Yang. Ultrafast plasmonic optical switching structures and devices. Front. Phys., 7, 190(2019).

    [13] G. M. Vanacore, G. Berruto, I. Madan, E. Pomarico, P. Biagioni, R. J. Lamb, D. McGrouther, O. Reinhardt, I. Kaminer, B. Barwick, H. Larocque, V. Grillo, E. Karimi, F. J. García de Abajo, F. Carbone. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater., 18, 573-579(2019).

    [14] C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. V. Wilson, P. Mulvaney. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 88, 077402(2002).

    [15] K. Ueno, J. Yang, Q. Sun, D. Aoyo, H. Yu, T. Oshikiri, A. Kubo, Y. Matsuo, Q. Gong, H. Misawa. Control of plasmon dephasing time using stacked nanogap gold structures for strong near-field enhancement. Appl. Mater. Today, 14, 159-165(2019).

    [16] Y. Li, Q. Sun, S. Zu, X. Shi, Y. Liu, X. Hu, K. Ueno, Q. Gong, H. Misawa. Correlation between near-field enhancement and dephasing time in plasmonic dimers. Phys. Rev. Lett., 124, 163901(2020).

    [17] Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, H. Misawa. Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy. ACS Nano, 10, 3835-3842(2016).

    [18] Y. Xu, Y. Qin, B. Ji, X. Song, J. Lin. Polarization manipulated femtosecond localized surface plasmon dephasing time in an individual bowtie structure. Opt. Express, 28, 9310-9319(2020).

    [19] T. Zentgraf, A. Christ, J. Kuhl, H. Giessen. Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals. Phys. Rev. Lett., 93, 243901(2004).

    [20] J. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, Q. Gong. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes. Nat. Commun., 9, 1(2018).

    [21] M. Müller, V. Kravtsov, A. Paarmann, M. B. Raschke, R. Ernstorfer. Nanofocused plasmon-driven sub-10  fs electron point source. ACS Photon., 3, 611-619(2016).

    [22] T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J. P. Martikainen, M. Nečada, A. J. Moilanen, P. Törmä. Lasing in dark and bright modes of a finite-sized plasmonic lattice. Nat. Commun., 8, 13687(2017).

    [23] Y. Wu, J. Wang, M. Ren, W. Zhao, R. Li, C. Z. Fan, E. Liang, Y. Li, P. Ding, J. He. Double-wavelength nanolaser based on strong coupling of localized and propagating surface plasmon. J. Phys. D, 53, 135108(2020).

    [24] K. Trofymchuk, A. Reisch, P. Didier, F. Ras, P. Gilliot, Y. Mely, A. S. Klymchenko. Giant light-harvesting nanoantenna for single-molecule detection in ambient light. Nat. Photonics, 11, 657-663(2017).

    [25] Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, H. Misawa. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett., 1, 2031-2036(2010).

    [26] X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, H. Misawa. Enhanced water splitting under modal strong coupling conditions. Nat. Nanotechnol., 13, 953-958(2018).

    [27] M. L. Brongersma, N. J. Halas, P. Nordlander. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol., 10, 25-34(2015).

    [28] M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz, M. Kreiter. Photoemission electron microscopy as a tool for the investigation of optical near fields. Phys. Rev. Lett., 95, 047601(2005).

    [29] Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, H. Misawa. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy. Light Sci. Appl., 2, e118(2013).

    [30] M. Aeschlimann, T. Brixner, A. Fischer, M. Hensen, B. Huber, D. Kilbane, C. Kramer, W. Pfeiffer, M. Piecuch, P. Thielen. Determination of local optical response functions of nanostructures with increasing complexity by using single and coupled Lorentzian oscillator models. Appl. Phys. B, 122, 199(2016).

    [31] J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, F. Capasso. Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett., 10, 4680-4685(2010).

    [32] J. Wang, X. Liu, L. Li, J. He, C. Fan, Y. Tian, P. Ding, D. Chen, Q. Xue, E. Liang. Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair. J. Opt., 15, 105003(2013).

    [33] D. J. Cho, F. Wang, X. Zhang, Y. R. Shen. Contribution of the electric quadrupole resonance in optical metamaterials. Phys. Rev. B, 78, 121101(2008).

    [34] G. Wang, X. Song, M. Jiang, P. Lang, B. Ji, Z. Fang, J. Lin. Fano resonance enhanced multiphoton photoemission from single plasmonic nanostructure excited by femtosecond laser. Phys. Rev. B, 103, 155403(2021).

    [35] N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater., 8, 758-762(2009).

    [36] H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, H. Misawa. Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy. ACS Nano, 10, 10373-10381(2016).

    [37] B. Lamprecht, J. R. Krenn, A. Leitner, F. R. Aussenegg. Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation. Phys. Rev. Lett., 83, 4421-4424(1999).

    [38] Y. Gao, N. Zhou, Z. Shi, X. Guo, L. Tong. Dark dimer mode excitation and strong coupling with a nanorod dipole. Photon. Res., 6, 887-892(2018).

    [39] N. A. Mirin, K. Bao, P. Nordlander. Fano resonances in plasmonic nanoparticle aggregates. J. Phys. Chem. A, 113, 4028-4034(2009).

    [40] S. E. Mun, H. Yun, C. Choi, S. J. Kim, B. Lee. Enhancement and switching of Fano resonance in metamaterial. Adv. Opt. Mater., 6, 1800545(2018).

    [41] C. P. Huang, X. G. Yin, L. B. Kong, Y. Y. Zhu. Interactions of nanorod particles in the strong coupling regime. J. Phys. Chem. C, 114, 21123-21131(2010).

    [42] M. Frimmer, T. Coenen, A. F. Koenderink. Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states. Phys. Rev. Lett., 108, 077404(2012).

    [43] M. Rahmani, B. Lukiyanchuk, B. Ng, K. G. Amir Tavakkoli, Y. F. Liew, M. H. Hong. Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Opt. Express, 19, 4949-4956(2011).

    [44] L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, R. Singh. Fano resonances in terahertz metasurfaces: a figure of merit optimization. Adv. Opt. Mater., 3, 1537-1543(2015).

    [45] T. Tsang. Classical Electrodynamics(1997).

    [46] K. Kolwas, A. Derkachova. Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay. J. Quant. Spectrosc. Radiat. Transfer, 114, 45-55(2013).

    [47] Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, S. H. Chang. Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography. ACS Nano, 6, 3390-3396(2012).

    [48] K. Shibata, S. Fujii, Q. Sun, A. Miura, K. Ueno. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes. J. Chem. Phys., 152, 104706(2020).

    [49] B. C. Yildiz, A. Bek, E. Tasgin. Plasmon lifetime enhancement in a bright-dark mode coupled system. Phys. Rev. B, 101, 035416(2020).

    [50] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    Yang Xu, Yulu Qin, Peng Lang, Boyu Ji, Xiaowei Song, Jingquan Lin. Flexible manipulation of plasmon dephasing time via the adjustable Fano asymmetric dimer[J]. Photonics Research, 2022, 10(10): 2267
    Download Citation