[1] Lin D, Qin Z Y, Yang J W et al. High resolution remotely sensed image classification method of multi-feature collaboration[J]. Journal of Geomatics Science and Technology, 31, 167-172(2014).
[2] Zhao C. Research on 3D building model reconstruction from airborne LiDAR point cloud aided by aerial image[D], 15-16(2020).
[3] Cao S, Pan S Y, Guan H Y. Random forest-based land-use classification using multispectral LiDAR data[J]. Bulletin of Surveying and Mapping, 79-84(2019).
[4] Wang Z. Soil salinization inversion and risk assessment based on fractional-order differentiation and machine learning[D], 9-10(2021).
[5] Chen Y S, Li C Y, Ghamisi P et al. Deep fusion of hyperspectral and LiDAR data for thematic classification[C], 3591-3594(2016).
[6] Sui H G, Liu C, Gan Z et al. Overview of multi-modal remote sensing image matching methods[J]. Acta Geodaetica et Cartographica Sinica, 51, 1848-1861(2022).
[7] Wang Z Y, Xing S, Dai M F. A method of ground object classification based on multi-scale deep feature fusion of remote sensing image and LiDAR point cloud[J]. Journal of Geomatics Science and Technology, 38, 604-610, 617(2021).
[8] Chen B W, Shi S, Gong W et al. Target classification of hyperspectral lidar based on optimization selection of spatial-spectral features[J]. Acta Optica Sinica, 43, 1228008(2023).
[9] Li H K, Wang L J, Xiao S S. Random forest classification of land use in hilly and mountaineous areas of Southern China using multi-source remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 37, 244-251(2021).
[10] Shi F F, Lei C M, Xiao J S et al. Classification of crops in complicated topography area based on multisource remote sensing data[J]. Geography and Geo-Information Science, 34, 49-55, 2(2018).
[11] Wang Y H, Fan W Y, Liu C Y. An object-based fusion of QUICKBIRD data and RADARSAT SAR data for classification analysis[J]. Journal of Northeast Forestry University, 44, 44-49(2016).
[12] Xu Z W, Guan K Y, Casler N et al. A 3D convolutional neural network method for land cover classification using LiDAR and multi-temporal Landsat imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 423-434(2018).
[13] Ghamisi P, Höfle B, Zhu X X. Hyperspectral and LiDAR data fusion using extinction profiles and deep convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 3011-3024(2017).
[14] Gu Y F, Wang Q W. Discriminative graph-based fusion of HSI and LiDAR data for urban area classification[J]. IEEE Geoscience and Remote Sensing Letters, 14, 906-910(2017).
[15] Xu X D, Li W, Ran Q et al. Multisource remote sensing data classification based on convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 937-949(2018).
[16] Mohla S, Pande S, Banerjee B et al. FusAtNet: dual attention based SpectroSpatial multimodal fusion network for hyperspectral and LiDAR classification[C], 416-425(2020).
[17] Shi X S, Cheng Y L, Xue D D et al. Object classification method for multi-source fusion point clouds based on Point-Net[J]. Laser & Optoelectronics Progress, 57, 081019(2020).
[18] Li S H, Hua H Y, Zhang H. Classification based on hyperspectral image and LiDAR data with contrastive learning[J]. Laser & Optoelectronics Progress, 60, 2228006(2023).
[19] Cheng R J, Yang Y, Li L W et al. Lightweight residual network based on depthwise separable convolution for hyperspectral image classification[J]. Acta Optica Sinica, 43, 1228010(2023).
[20] Hang R L, Li Z, Ghamisi P et al. Classification of hyperspectral and LiDAR data using coupled CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 4939-4950(2020).
[21] Ni K, Wang D, Zhao G F et al. Hyperspectral and LiDAR classification via frequency domain-based network[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 5525117(2024).
[22] Meng X C, Zhang S F, Liu Q et al. Uncertain category-aware fusion network for hyperspectral and LiDAR joint classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 5523015(2024).
[23] Wang Y B, Dai S, Song D M et al. Autoencoder-based fusion classification of hyperspectral and LiDAR data[J]. Laser & Optoelectronics Progress, 61, 1228001(2024).
[24] Li R, Zheng S Y, Duan C X et al. Multistage attention ResU-net for semantic segmentation of fine-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 19, 8009205(2021).
[25] Li X, Zhang G, Cui H et al. MCANet: a joint semantic segmentation framework of optical and SAR images for land use classification[J]. International Journal of Applied Earth Observation and Geoinformation, 106, 102638(2022).
[26] Zeng J Y, Deng S Y, Qin C B et al. Multi-level branch cross-scale fusion network for high-precision semantic segmentation in complex remote sensing environments[J]. Laser & Optoelectronics Progress, 62, 0428003(2025).
[27] Du X X, Zare A. Technical report: scene label ground truth map for MUUFL gulfport data set[D](2017).
[28] Xu Y H, Du B, Zhang L P et al. Advanced multi-sensor optical remote sensing for urban land use and land cover classification: outcome of the 2018 IEEE GRSS data fusion contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 1709-1724(2019).
[29] Rasti B, Ghamisi P, Gloaguen R. Hyperspectral and LiDAR fusion using extinction profiles and total variation component analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 3997-4007(2017).
[30] Khodadadzadeh M, Li J, Prasad S et al. Fusion of hyperspectral and LiDAR remote sensing data using multiple feature learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 2971-2983(2015).
[31] Lee H, Kwon H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 26, 4843-4855(2017).
[32] Wu H, Prasad S. Convolutional recurrent neural networks for hyperspectral data classification[J]. Remote Sensing, 9, 298(2017).
[33] Dosovitskiy A, Beyer L, Kolesnikov A et al. An image is worth[EB/OL], 16-16. https://arxiv.org/abs/2010.11929
[34] Hong D F, Han Z, Yao J et al. SpectralFormer: rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5518615(2021).