• Laser & Optoelectronics Progress
  • Vol. 62, Issue 10, 1028002 (2025)
Dan Fan1, Zhengwei Yang1,*, Xia Li2, Chao Feng1, and Chuangjiang Rao2
Author Affiliations
  • 1Yunnan Water Resources and Hydropower Survey and Design Institute Co., Ltd., Kunming 650032, Yunnan , China
  • 2Yunnan Institute of Water & Hydropower Engineering Investigation, Design and Research, Kunming 650032, Yunnan , China
  • show less
    DOI: 10.3788/LOP242189 Cite this Article Set citation alerts
    Dan Fan, Zhengwei Yang, Xia Li, Chao Feng, Chuangjiang Rao. Cross-Feature Granularity Fusion Network for Land Cover Classification of Hyperspectral Remote Sensing Images and LiDAR[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1028002 Copy Citation Text show less
    Network framework
    Fig. 1. Network framework
    Structure of MCFF
    Fig. 2. Structure of MCFF
    Structure of CGFI
    Fig. 3. Structure of CGFI
    MUUFL dataset. (a) Hyperspectral image; (b) LiDAR image; (c) ground-truth map
    Fig. 4. MUUFL dataset. (a) Hyperspectral image; (b) LiDAR image; (c) ground-truth map
    Houston 2018 dataset. (a) Hyperspectral image; (b) LiDAR image; (c) ground-truth map
    Fig. 5. Houston 2018 dataset. (a) Hyperspectral image; (b) LiDAR image; (c) ground-truth map
    Trento dataset. (a) Hyperspectral image; (b) LiDAR image; (c) ground-truth map
    Fig. 6. Trento dataset. (a) Hyperspectral image; (b) LiDAR image; (c) ground-truth map
    Classification results of different models on the MUUFL dataset. (a) Context CNN; (b) CRNN; (c) ViT; (d) SpectralFormer; (e) Two-Branch CNN; (f) Coupled CNN; (g) FusAtNet; (h) CFCGNet
    Fig. 7. Classification results of different models on the MUUFL dataset. (a) Context CNN; (b) CRNN; (c) ViT; (d) SpectralFormer; (e) Two-Branch CNN; (f) Coupled CNN; (g) FusAtNet; (h) CFCGNet
    Classification results of different models on the Houston 2018 dataset. (a) Context CNN; (b) CRNN; (c) ViT; (d) SpectralFormer; (e) Two-Branch CNN; (f) Coupled CNN; (g) FusAtNet; (h) CFCGNet
    Fig. 8. Classification results of different models on the Houston 2018 dataset. (a) Context CNN; (b) CRNN; (c) ViT; (d) SpectralFormer; (e) Two-Branch CNN; (f) Coupled CNN; (g) FusAtNet; (h) CFCGNet
    Classification results of different models on the Trento dataset. (a) Context CNN; (b) CRNN; (c) ViT; (d) SpectralFormer; (e) Two-Branch CNN; (f) Coupled CNN; (g) FusAtNet; (h) CFCGNet
    Fig. 9. Classification results of different models on the Trento dataset. (a) Context CNN; (b) CRNN; (c) ViT; (d) SpectralFormer; (e) Two-Branch CNN; (f) Coupled CNN; (g) FusAtNet; (h) CFCGNet
    ClassTwo-Branch CNNCoupled CNNContext CNNCRNNFusAtNetViTSpectralFormerCFCGNet
    trees92.7898.5091.4387.2593.6285.6990.2694.62
    mostly grass59.7478.6663.7685.3684.6481.5675.4688.54
    mixed ground surface94.1590.2981.6290.2187.1473.8778.8492.84
    dirt and sand93.1290.0593.2494.6792.7886.0386.8796.08
    road92.4696.8389.0684.5186.1386.3189.1392.33
    water98.0275.0992.6981.4883.5493.0798.4599.04
    building shadow95.2873.7884.3193.5989.9183.8288.1992.21
    building94.4296.8181.7290.2295.2883.7477.8292.47
    sidewalk86.5364.5181.5387.2385.3371.1374.3384.13
    yellow curb99.3719.7599.0393.2891.80100.0094.08100.00
    cloth panels96.8162.3698.6799.3698.2699.6397.6099.23
    OA90.5292.6286.1388.0390.8783.4485.5493.13
    AA91.1576.9787.0189.7489.8685.9086.4693.71
    Kappa84.7288.3982.1583.5986.0876.2478.3289.34
    Table 1. Classification evaluation metrics of different models on the MUUFL dataset
    ClassTwo-Branch CNNCoupled CNNContext CNNCRNNFusAtNetViTSpectralFormerCFCGNet
    healthy grass93.4191.0594.7279.0277.9875.5485.6476.04
    stressed grass90.9691.1290.2093.6193.9592.7586.1296.75
    artificial turf99.1599.6899.2398.4999.5476.0299.3198.86
    evergreen trees94.5395.4193.3896.5493.8597.1396.8997.37
    deciduous trees95.4795.9785.9686.5988.2181.7685.8394.02
    bare earth99.5499.0899.2399.63100.0097.8889.5799.91
    water100.0099.1098.3567.0575.85100.0092.2898.95
    residential buildings83.8688.4485.8193.9694.8188.7988.7398.31
    non-residential buildings92.7793.0795.6498.7898.5598.6397.4598.21
    roads72.6085.2161.6178.7480.7983.0570.8786.23
    sidewalks63.3958.4861.4073.0477.3874.8473.2080.95
    crosswalks67.9265.8470.0831.8521.6827.9018.2859.71
    major thoroughfares70.1965.3669.3988.3086.8483.6582.9997.50
    highways91.8593.2685.1190.0289.3184.7482.2789.27
    railways96.4799.5896.48100.0099.1599.3199.0398.60
    paved parking lots93.1789.4588.3095.9694.9993.4688.5497.50
    unpaved parking lots98.8399.9199.0855.6346.5223.6064.0972.27
    cars94.5295.5393.5281.9585.2986.8385.8293.97
    trains96.5897.7696.4195.1595.1795.7495.1698.83
    stadium seats99.8098.0897.3698.9799.6398.6197.8099.48
    OA86.3487.1886.1492.2992.5391.6089.3495.73
    AA89.7590.0788.0685.1684.9783.0184.0091.64
    Kappa87.3189.6186.8990.4289.9087.9585.5792.68
    Table 2. Classification evaluation metrics of different models on the Houston 2018 dataset
    ClassTwo-Branch CNNCoupled CNNContext CNNCRNNFusAtNetViTSpectralFormerCFCGNet
    apple trees99.2199.0596.4594.3099.6793.9194.8699.10
    buildings97.1297.7794.6393.3496.8394.8193.4496.77
    ground83.5482.8480.2979.5379.0182.4380.0388.27
    wood98.9999.2796.9395.7399.7497.3596.0599.80
    vineyard93.9693.0093.6193.8198.9299.0095.8699.77
    roads88.5288.6285.7187.8789.7576.4180.7490.65
    OA95.7495.5494.0593.5897.8194.7493.7098.26
    AA93.5693.4391.2790.7693.9990.6590.1695.73
    Kappa93.3593.2293.5492.4595.5792.2089.4697.41
    Table 3. Classification evaluation metrics of different models on the Trento dataset
    DatasetComplexityTwo-Branch CNNCoupled CNNContext CNNCRNNFusAtNetViTSpectralFormerCFCGNet
    HoustonTraining time727.39184.432198.58289.621329.44309.49399.011162.37
    Testing time15.241.379.021.415.151.762.014.45
    MUUFLTraining time338.3288.67972.82135.97773.52155.44175.74589.76
    Testing time7.040.763.970.703.604.946.312.94
    TrentoTraining time549.03117.291947.73217.76394.2276.295.81312.40
    Testing time17.211.658.701.0612.444.853.749.47
    Table 4. The computational cost of different models on various datasets
    ModelMUUFLHonston 2018Trento
    MCFF_baseMCFFCGFIOAAAKappaOAAAKappaOAAAKappa
    ×××86.5187.2983.0188.6586.7387.5395.7491.1893.04
    ××90.4491.1886.8592.5788.0989.9796.9393.7195.20
    ××89.1590.6886.2191.8488.8190.1696.4294.8696.07
    ×90.5992.3687.7392.4089.9290.7097.3995.3596.92
    ×92.1393.7789.0494.7791.1491.6898.2695.7397.41
    Table 5. Experimental results of ablation of model structure
    ModelMUUFLHonston 2018Trento
    LCELWCEOAAAKappaOAAAKappaOAAAKappa
    ×89.0490.1886.7491.5387.7388.2196.4494.0695.10
    ×92.1393.7789.0494.7791.1491.6898.2695.7397.41
    Table 6. Experimental results of ablation of loss function
    Dan Fan, Zhengwei Yang, Xia Li, Chao Feng, Chuangjiang Rao. Cross-Feature Granularity Fusion Network for Land Cover Classification of Hyperspectral Remote Sensing Images and LiDAR[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1028002
    Download Citation