• Advanced Photonics Nexus
  • Vol. 2, Issue 1, 016007 (2023)
Francesco Hoch1, Taira Giordani1, Nicolò Spagnolo1, Andrea Crespi2、3, Roberto Osellame3, and Fabio Sciarrino1、*
Author Affiliations
  • 1Sapienza Università di Roma, Dipartimento di Fisica, Roma, Italy
  • 2Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
  • 3Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
  • show less
    DOI: 10.1117/1.APN.2.1.016007 Cite this Article Set citation alerts
    Francesco Hoch, Taira Giordani, Nicolò Spagnolo, Andrea Crespi, Roberto Osellame, Fabio Sciarrino. Characterization of multimode linear optical networks[J]. Advanced Photonics Nexus, 2023, 2(1): 016007 Copy Citation Text show less
    References

    [1] K. Vandoorne et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun., 5, 3541(2014).

    [2] D. Brunner, M. C. Soriano, G. V. der Sande. Photonic Reservoir Computing: Optical Recurrent Neural Networks(2019).

    [3] M. Rafayelyan et al. Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction. Phys. Rev. X, 10, 041037(2020).

    [4] M. Nakajima, K. Tanaka, T. Hashimoto. Scalable reservoir computing on coherent linear photonic processor. Commun. Phys., 4, 20(2021).

    [5] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [6] T. Wang et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun., 13, 123(2022).

    [7] D. Pierangeli, G. Marcucci, C. Conti. Large-scale photonic Ising machine by spatial light modulation. Phys. Rev. Lett., 122, 213902(2019).

    [8] Y. Okawachi et al. Demonstration of chip-based coupled degenerate optical parametric oscillators for realizing a nanophotonic spin-glass. Nat. Commun., 11, 4119(2020).

    [9] M. Leonetti et al. Optical computation of a spin glass dynamics with tunable complexity. Proc. Natl. Acad. Sci. U. S. A., 118, e2015207118(2021).

    [10] F. Flamini, N. Spagnolo, F. Sciarrino. Photonic quantum information processing: a review. Rep. Progr. Phys., 82, 016001(2018).

    [11] J. Wang et al. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [12] M. Gräfe et al. Integrated photonic quantum walks. J. Opt., 18, 103002(2016).

    [13] F. Cardano et al. Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv., 1, e1500087(2015).

    [14] C. Esposito et al. Quantum walks of two correlated photons in a 2D synthetic lattice. NPJ Quantum Inf., 8, 34(2022).

    [15] J. Wang et al. Experimental quantum Hamiltonian learning. Nat. Phys., 13, 551-555(2017).

    [16] V. Saggio et al. Experimental quantum speed-up in reinforcement learning agents. Nature, 591, 229-233(2021).

    [17] M. Spagnolo et al. Experimental photonic quantum memristor. Nat. Photonics, 16, 318-323(2022).

    [18] H.-S. Zhong et al. Quantum computational advantage using photons. Science, 370, 1460-1463(2020).

    [19] H.-S. Zhong et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett., 127, 180502(2021).

    [20] L. S. Madsen et al. Quantum computational advantage with a programmable photonic processor. Nature, 606, 75-81(2022).

    [21] E. Pelucchi et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys., 4, 194-208(2022).

    [22] C. Taballione et al. 20-mode universal quantum photonic processor(2022).

    [23] F. Hoch et al. Reconfigurable continuously-coupled 3D photonic circuit for boson sampling experiments. NPJ Quantum Inf., 8, 35(2021).

    [24] M. Reck et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73, 58-61(1994).

    [25] W. R. Clements et al. Optimal design for universal multiport interferometers. Optica, 3, 1460-1465(2016).

    [26] M. Tillmann, C. Schmidt, P. Walther. On unitary reconstruction of linear optical networks. J. Opt., 18, 114002(2016).

    [27] N. Spagnolo et al. Learning an unknown transformation via a genetic approach. Sci. Rep., 7, 14316(2017).

    [28] A. Laing, J. L. O’Brien. Super-stable tomography of any linear optical device(2012).

    [29] I. Dhand et al. Accurate and precise characterization of linear optical interferometers. J. Opt., 18, 035204(2016).

    [30] S. Rahimi-Keshari et al. Direct characterization of linear-optical networks. Opt. Express, 21, 13450-13458(2013).

    [31] S. M. Popoff et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [32] S. M. Popoff et al. Controlling light through optical disordered media: transmission matrix approach. New J. Phys., 13, 123021(2011).

    [33] D. Suess et al. Rapid characterisation of linear-optical networks via PhaseLift(2020).

    [34] V. Cimini et al. Calibration of multiparameter sensors via machine learning at the single-photon level. Phys. Rev. Appl., 15, 044003(2021).

    [35] A. Suprano et al. Dynamical learning of a photonics quantum-state engineering process. Adv. Photon., 3, 1-11(2021).

    [36] S. Kuzmin, I. Dyakonov, S. Kulik. Architecture agnostic algorithm for reconfigurable optical interferometer programming. Opt. Express, 29, 38429-38440(2021).

    [37] C.-K. Hong, Z.-Y. Ou, L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett., 59, 2044-2046(1987).

    [38] R. Keil et al. Photon correlations in two-dimensional waveguide arrays and their classical estimate. Phys. Rev. A, 81, 023834(2010).

    [39] R. Hanbury Brown, R. Q. Twiss. A test of a new type of stellar interferometer on Sirius. Nature, 178, 1046-1048(1956).

    [40] M. Oszmaniec, D. J. Brod. Classical simulation of photonic linear optics with lost particles. New J. Phys., 20, 092002(2018).

    [41] S. Rahimi-Keshari, S. Baghbanzadeh, C. M. Caves. In situ characterization of linear-optical networks in randomized boson sampling. Phys. Rev. A, 101, 043809(2020).

    [42] R. Sinkhorn, P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pac. J. Math., 21, 343-348(1967).

    [43] R. Sinkhorn. Continuous dependence on A in the D1AD2 theorems. Proc. Am. Math. Soc., 32, 395-398(1972). https://doi.org/10.1090/S0002-9939-1972-0297792-4

    [44] M. Idel. A review of matrix scaling and Sinkhorn’s normal form for matrices and positive maps(2016).

    [45] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2, 219-225(2008).

    [46] N. Spagnolo et al. Three-photon bosonic coalescence in an integrated tritter. Nat. Commun., 4, 1606(2013).

    [47] E. Polino et al. Experimental multiphase estimation on a chip. Optica, 6, 288-295(2019).

    Francesco Hoch, Taira Giordani, Nicolò Spagnolo, Andrea Crespi, Roberto Osellame, Fabio Sciarrino. Characterization of multimode linear optical networks[J]. Advanced Photonics Nexus, 2023, 2(1): 016007
    Download Citation